Loading…
Kadomtsev–Petviashvili Turning Points and CKP Hierarchy
A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of...
Saved in:
Published in: | Communications in mathematical physics 2021-09, Vol.386 (3), p.1643-1683 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93 |
container_end_page | 1683 |
container_issue | 3 |
container_start_page | 1643 |
container_title | Communications in mathematical physics |
container_volume | 386 |
creator | Krichever, I. Zabrodin, A. |
description | A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained. |
doi_str_mv | 10.1007/s00220-021-04119-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560853035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560853035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaRWBtmxokTL1EFFLUSXZS15SRO66pNip1G6o47cENOQiBI7FjN5v3_R4-xa4RbBEjvAgARcCDkECMqLk_YCGNBHBTKUzYCQOBCojxnFyFsAECRlCOmZqZsdm2w3ef7x8K2nTNh3bmti5YHX7t6FS0aV7chMnUZTWaLaOqsN75YHy_ZWWW2wV793jF7fXxYTqZ8_vL0PLmf80KganksFJSY2SxTlOaQ5mhUQYUt0wRFHldJIqSpYoOGTEpxXsqqIMoqJFSxNEqM2c3Qu_fN28GGVm-a_rV-UlMiIUsEiKSnaKAK34TgbaX33u2MP2oE_a1ID4p0r0j_KNKyD4khFHq4Xln_V_1P6gvOEWh6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560853035</pqid></control><display><type>article</type><title>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</title><source>Springer Nature</source><creator>Krichever, I. ; Zabrodin, A.</creator><creatorcontrib>Krichever, I. ; Zabrodin, A.</creatorcontrib><description>A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04119-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Fixed points (mathematics) ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-09, Vol.386 (3), p.1643-1683</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</citedby><cites>FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</cites><orcidid>0000-0002-4319-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krichever, I.</creatorcontrib><creatorcontrib>Zabrodin, A.</creatorcontrib><title>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaRWBtmxokTL1EFFLUSXZS15SRO66pNip1G6o47cENOQiBI7FjN5v3_R4-xa4RbBEjvAgARcCDkECMqLk_YCGNBHBTKUzYCQOBCojxnFyFsAECRlCOmZqZsdm2w3ef7x8K2nTNh3bmti5YHX7t6FS0aV7chMnUZTWaLaOqsN75YHy_ZWWW2wV793jF7fXxYTqZ8_vL0PLmf80KganksFJSY2SxTlOaQ5mhUQYUt0wRFHldJIqSpYoOGTEpxXsqqIMoqJFSxNEqM2c3Qu_fN28GGVm-a_rV-UlMiIUsEiKSnaKAK34TgbaX33u2MP2oE_a1ID4p0r0j_KNKyD4khFHq4Xln_V_1P6gvOEWh6</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Krichever, I.</creator><creator>Zabrodin, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4319-770X</orcidid></search><sort><creationdate>20210901</creationdate><title>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</title><author>Krichever, I. ; Zabrodin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krichever, I.</creatorcontrib><creatorcontrib>Zabrodin, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krichever, I.</au><au>Zabrodin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>386</volume><issue>3</issue><spage>1643</spage><epage>1683</epage><pages>1643-1683</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04119-6</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-4319-770X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2021-09, Vol.386 (3), p.1643-1683 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_2560853035 |
source | Springer Nature |
subjects | Classical and Quantum Gravitation Complex Systems Fixed points (mathematics) Mathematical analysis Mathematical and Computational Physics Mathematical Physics Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Kadomtsev–Petviashvili Turning Points and CKP Hierarchy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kadomtsev%E2%80%93Petviashvili%20Turning%20Points%20and%20CKP%20Hierarchy&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Krichever,%20I.&rft.date=2021-09-01&rft.volume=386&rft.issue=3&rft.spage=1643&rft.epage=1683&rft.pages=1643-1683&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04119-6&rft_dat=%3Cproquest_cross%3E2560853035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560853035&rft_id=info:pmid/&rfr_iscdi=true |