Loading…

Kadomtsev–Petviashvili Turning Points and CKP Hierarchy

A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2021-09, Vol.386 (3), p.1643-1683
Main Authors: Krichever, I., Zabrodin, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93
cites cdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93
container_end_page 1683
container_issue 3
container_start_page 1643
container_title Communications in mathematical physics
container_volume 386
creator Krichever, I.
Zabrodin, A.
description A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.
doi_str_mv 10.1007/s00220-021-04119-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560853035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560853035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaRWBtmxokTL1EFFLUSXZS15SRO66pNip1G6o47cENOQiBI7FjN5v3_R4-xa4RbBEjvAgARcCDkECMqLk_YCGNBHBTKUzYCQOBCojxnFyFsAECRlCOmZqZsdm2w3ef7x8K2nTNh3bmti5YHX7t6FS0aV7chMnUZTWaLaOqsN75YHy_ZWWW2wV793jF7fXxYTqZ8_vL0PLmf80KganksFJSY2SxTlOaQ5mhUQYUt0wRFHldJIqSpYoOGTEpxXsqqIMoqJFSxNEqM2c3Qu_fN28GGVm-a_rV-UlMiIUsEiKSnaKAK34TgbaX33u2MP2oE_a1ID4p0r0j_KNKyD4khFHq4Xln_V_1P6gvOEWh6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560853035</pqid></control><display><type>article</type><title>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</title><source>Springer Nature</source><creator>Krichever, I. ; Zabrodin, A.</creator><creatorcontrib>Krichever, I. ; Zabrodin, A.</creatorcontrib><description>A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04119-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Fixed points (mathematics) ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-09, Vol.386 (3), p.1643-1683</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</citedby><cites>FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</cites><orcidid>0000-0002-4319-770X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Krichever, I.</creatorcontrib><creatorcontrib>Zabrodin, A.</creatorcontrib><title>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Fixed points (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaRWBtmxokTL1EFFLUSXZS15SRO66pNip1G6o47cENOQiBI7FjN5v3_R4-xa4RbBEjvAgARcCDkECMqLk_YCGNBHBTKUzYCQOBCojxnFyFsAECRlCOmZqZsdm2w3ef7x8K2nTNh3bmti5YHX7t6FS0aV7chMnUZTWaLaOqsN75YHy_ZWWW2wV793jF7fXxYTqZ8_vL0PLmf80KganksFJSY2SxTlOaQ5mhUQYUt0wRFHldJIqSpYoOGTEpxXsqqIMoqJFSxNEqM2c3Qu_fN28GGVm-a_rV-UlMiIUsEiKSnaKAK34TgbaX33u2MP2oE_a1ID4p0r0j_KNKyD4khFHq4Xln_V_1P6gvOEWh6</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Krichever, I.</creator><creator>Zabrodin, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4319-770X</orcidid></search><sort><creationdate>20210901</creationdate><title>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</title><author>Krichever, I. ; Zabrodin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Fixed points (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krichever, I.</creatorcontrib><creatorcontrib>Zabrodin, A.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krichever, I.</au><au>Zabrodin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kadomtsev–Petviashvili Turning Points and CKP Hierarchy</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>386</volume><issue>3</issue><spage>1643</spage><epage>1683</epage><pages>1643-1683</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04119-6</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-4319-770X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2021-09, Vol.386 (3), p.1643-1683
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2560853035
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Fixed points (mathematics)
Mathematical analysis
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Kadomtsev–Petviashvili Turning Points and CKP Hierarchy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kadomtsev%E2%80%93Petviashvili%20Turning%20Points%20and%20CKP%20Hierarchy&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Krichever,%20I.&rft.date=2021-09-01&rft.volume=386&rft.issue=3&rft.spage=1643&rft.epage=1683&rft.pages=1643-1683&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04119-6&rft_dat=%3Cproquest_cross%3E2560853035%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4390d18e88927b07b1a9c2ced7513b4f5536af4a1a2a724bd6fc228f121946a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560853035&rft_id=info:pmid/&rfr_iscdi=true