Loading…

Experimental verification of mixed metal oxide-based sensor for multiple sensing application

•MMO sensor was fabricated using hydrothermal method.•Fabricated sensor subjected to acceleration sensing setup gave an output voltage.•Fabricated sensor subjected to gas sensing setup gave change in resistance.•This sensor finds plausible application for multiple sensing. Mixed Metal Oxide (MMO) ba...

Full description

Saved in:
Bibliographic Details
Published in:Materials letters 2021-10, Vol.301, p.130248, Article 130248
Main Authors: Ramany, Kiruthika, Shankararajan, Radha, Savarimuthu, Kirubaveni, Venkatachalapathi, Shyamala, Sivakumar, Gayathri, Murali, Devipriya, Gunasekaran, Iyappan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-6133dbf78d31ee80dded43bc660ff63bf118e7baa687a6340f83e706a13df5173
cites cdi_FETCH-LOGICAL-c334t-6133dbf78d31ee80dded43bc660ff63bf118e7baa687a6340f83e706a13df5173
container_end_page
container_issue
container_start_page 130248
container_title Materials letters
container_volume 301
creator Ramany, Kiruthika
Shankararajan, Radha
Savarimuthu, Kirubaveni
Venkatachalapathi, Shyamala
Sivakumar, Gayathri
Murali, Devipriya
Gunasekaran, Iyappan
description •MMO sensor was fabricated using hydrothermal method.•Fabricated sensor subjected to acceleration sensing setup gave an output voltage.•Fabricated sensor subjected to gas sensing setup gave change in resistance.•This sensor finds plausible application for multiple sensing. Mixed Metal Oxide (MMO) based piezoelectric sensor was fabricated using Zinc Oxide (ZnO) and Ferric Oxide (Fe2O3). The X-Ray diffraction pattern shows the presence of ZnO and Fe2O3 with the respective characteristic peaks. Field Emission Scanning Electron Microscope confirms the ZnO nanorods grown using the hydrothermal method and shows the deposition of Fe2O3 nanoparticles on the ZnO nanorods. The electrical analysis using photoconductivity study reveals the formation of p-n junction in both the samples. The fabricated MMO sensor when subjected to piezoelectric sensing set up gave an improved output voltage of 1.32 V for 1 g input acceleration compared to the other. Similarly, when both the sensors were exposed to gas sensing setup, improved sensitivity of 7.66 and 0.791 for 100 ppm of Carbon Monoxide and Methane at room temperature respectively was obtained when compared to the other sensor fabricated.
doi_str_mv 10.1016/j.matlet.2021.130248
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560875320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X21009459</els_id><sourcerecordid>2560875320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6133dbf78d31ee80dded43bc660ff63bf118e7baa687a6340f83e706a13df5173</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPBQ8tyZNmmQvgix-wYIXBQ9CSJuJpPTLJLus_96s3bOHYYY3b97wHkLXBBcEE37bFr2OHcSixCUpCMUlkydoQaSgOVuJ1SlaJJrIKyE-ztFFCC3GmK0wW6DPh_0E3vUwRN1luzRa1-joxiEbbda7PZish8Nu3DsDea1DQgIMYfSZTdVvu-imDv4wN3xlepq6o8QlOrO6C3B17Ev0_vjwtn7ON69PL-v7Td5QymLOCaWmtkIaSgAkNgYMo3XDObaW09oSIkHUWnMpNKcMW0lBYK4JNbYigi7Rzaw7-fF7CyGqdtz6Ib1UZcWxFBUtcWKxmdX4MQQPVk3JuPY_imB1yFG1as5RHXJUc47p7G4-g-Rg58Cr0DgYGjDOQxOVGd3_Ar-UUH9Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560875320</pqid></control><display><type>article</type><title>Experimental verification of mixed metal oxide-based sensor for multiple sensing application</title><source>ScienceDirect Freedom Collection</source><creator>Ramany, Kiruthika ; Shankararajan, Radha ; Savarimuthu, Kirubaveni ; Venkatachalapathi, Shyamala ; Sivakumar, Gayathri ; Murali, Devipriya ; Gunasekaran, Iyappan</creator><creatorcontrib>Ramany, Kiruthika ; Shankararajan, Radha ; Savarimuthu, Kirubaveni ; Venkatachalapathi, Shyamala ; Sivakumar, Gayathri ; Murali, Devipriya ; Gunasekaran, Iyappan</creatorcontrib><description>•MMO sensor was fabricated using hydrothermal method.•Fabricated sensor subjected to acceleration sensing setup gave an output voltage.•Fabricated sensor subjected to gas sensing setup gave change in resistance.•This sensor finds plausible application for multiple sensing. Mixed Metal Oxide (MMO) based piezoelectric sensor was fabricated using Zinc Oxide (ZnO) and Ferric Oxide (Fe2O3). The X-Ray diffraction pattern shows the presence of ZnO and Fe2O3 with the respective characteristic peaks. Field Emission Scanning Electron Microscope confirms the ZnO nanorods grown using the hydrothermal method and shows the deposition of Fe2O3 nanoparticles on the ZnO nanorods. The electrical analysis using photoconductivity study reveals the formation of p-n junction in both the samples. The fabricated MMO sensor when subjected to piezoelectric sensing set up gave an improved output voltage of 1.32 V for 1 g input acceleration compared to the other. Similarly, when both the sensors were exposed to gas sensing setup, improved sensitivity of 7.66 and 0.791 for 100 ppm of Carbon Monoxide and Methane at room temperature respectively was obtained when compared to the other sensor fabricated.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2021.130248</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acceleration ; Diffraction patterns ; Ferric oxide ; Field emission microscopy ; Gas ; Gas sensors ; Materials science ; Metal oxides ; Mixed Metal ; Nanoparticle ; Nanoparticles ; Nanorods ; P-n junctions ; Photoconductivity ; Piezoelectric ; Piezoelectricity ; Room temperature ; Sensor ; Sensors ; Zinc oxide ; Zinc oxides</subject><ispartof>Materials letters, 2021-10, Vol.301, p.130248, Article 130248</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6133dbf78d31ee80dded43bc660ff63bf118e7baa687a6340f83e706a13df5173</citedby><cites>FETCH-LOGICAL-c334t-6133dbf78d31ee80dded43bc660ff63bf118e7baa687a6340f83e706a13df5173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ramany, Kiruthika</creatorcontrib><creatorcontrib>Shankararajan, Radha</creatorcontrib><creatorcontrib>Savarimuthu, Kirubaveni</creatorcontrib><creatorcontrib>Venkatachalapathi, Shyamala</creatorcontrib><creatorcontrib>Sivakumar, Gayathri</creatorcontrib><creatorcontrib>Murali, Devipriya</creatorcontrib><creatorcontrib>Gunasekaran, Iyappan</creatorcontrib><title>Experimental verification of mixed metal oxide-based sensor for multiple sensing application</title><title>Materials letters</title><description>•MMO sensor was fabricated using hydrothermal method.•Fabricated sensor subjected to acceleration sensing setup gave an output voltage.•Fabricated sensor subjected to gas sensing setup gave change in resistance.•This sensor finds plausible application for multiple sensing. Mixed Metal Oxide (MMO) based piezoelectric sensor was fabricated using Zinc Oxide (ZnO) and Ferric Oxide (Fe2O3). The X-Ray diffraction pattern shows the presence of ZnO and Fe2O3 with the respective characteristic peaks. Field Emission Scanning Electron Microscope confirms the ZnO nanorods grown using the hydrothermal method and shows the deposition of Fe2O3 nanoparticles on the ZnO nanorods. The electrical analysis using photoconductivity study reveals the formation of p-n junction in both the samples. The fabricated MMO sensor when subjected to piezoelectric sensing set up gave an improved output voltage of 1.32 V for 1 g input acceleration compared to the other. Similarly, when both the sensors were exposed to gas sensing setup, improved sensitivity of 7.66 and 0.791 for 100 ppm of Carbon Monoxide and Methane at room temperature respectively was obtained when compared to the other sensor fabricated.</description><subject>Acceleration</subject><subject>Diffraction patterns</subject><subject>Ferric oxide</subject><subject>Field emission microscopy</subject><subject>Gas</subject><subject>Gas sensors</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>Mixed Metal</subject><subject>Nanoparticle</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>P-n junctions</subject><subject>Photoconductivity</subject><subject>Piezoelectric</subject><subject>Piezoelectricity</subject><subject>Room temperature</subject><subject>Sensor</subject><subject>Sensors</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPBQ8tyZNmmQvgix-wYIXBQ9CSJuJpPTLJLus_96s3bOHYYY3b97wHkLXBBcEE37bFr2OHcSixCUpCMUlkydoQaSgOVuJ1SlaJJrIKyE-ztFFCC3GmK0wW6DPh_0E3vUwRN1luzRa1-joxiEbbda7PZish8Nu3DsDea1DQgIMYfSZTdVvu-imDv4wN3xlepq6o8QlOrO6C3B17Ev0_vjwtn7ON69PL-v7Td5QymLOCaWmtkIaSgAkNgYMo3XDObaW09oSIkHUWnMpNKcMW0lBYK4JNbYigi7Rzaw7-fF7CyGqdtz6Ib1UZcWxFBUtcWKxmdX4MQQPVk3JuPY_imB1yFG1as5RHXJUc47p7G4-g-Rg58Cr0DgYGjDOQxOVGd3_Ar-UUH9Z</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Ramany, Kiruthika</creator><creator>Shankararajan, Radha</creator><creator>Savarimuthu, Kirubaveni</creator><creator>Venkatachalapathi, Shyamala</creator><creator>Sivakumar, Gayathri</creator><creator>Murali, Devipriya</creator><creator>Gunasekaran, Iyappan</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211015</creationdate><title>Experimental verification of mixed metal oxide-based sensor for multiple sensing application</title><author>Ramany, Kiruthika ; Shankararajan, Radha ; Savarimuthu, Kirubaveni ; Venkatachalapathi, Shyamala ; Sivakumar, Gayathri ; Murali, Devipriya ; Gunasekaran, Iyappan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6133dbf78d31ee80dded43bc660ff63bf118e7baa687a6340f83e706a13df5173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Diffraction patterns</topic><topic>Ferric oxide</topic><topic>Field emission microscopy</topic><topic>Gas</topic><topic>Gas sensors</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>Mixed Metal</topic><topic>Nanoparticle</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>P-n junctions</topic><topic>Photoconductivity</topic><topic>Piezoelectric</topic><topic>Piezoelectricity</topic><topic>Room temperature</topic><topic>Sensor</topic><topic>Sensors</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramany, Kiruthika</creatorcontrib><creatorcontrib>Shankararajan, Radha</creatorcontrib><creatorcontrib>Savarimuthu, Kirubaveni</creatorcontrib><creatorcontrib>Venkatachalapathi, Shyamala</creatorcontrib><creatorcontrib>Sivakumar, Gayathri</creatorcontrib><creatorcontrib>Murali, Devipriya</creatorcontrib><creatorcontrib>Gunasekaran, Iyappan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramany, Kiruthika</au><au>Shankararajan, Radha</au><au>Savarimuthu, Kirubaveni</au><au>Venkatachalapathi, Shyamala</au><au>Sivakumar, Gayathri</au><au>Murali, Devipriya</au><au>Gunasekaran, Iyappan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental verification of mixed metal oxide-based sensor for multiple sensing application</atitle><jtitle>Materials letters</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>301</volume><spage>130248</spage><pages>130248-</pages><artnum>130248</artnum><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>•MMO sensor was fabricated using hydrothermal method.•Fabricated sensor subjected to acceleration sensing setup gave an output voltage.•Fabricated sensor subjected to gas sensing setup gave change in resistance.•This sensor finds plausible application for multiple sensing. Mixed Metal Oxide (MMO) based piezoelectric sensor was fabricated using Zinc Oxide (ZnO) and Ferric Oxide (Fe2O3). The X-Ray diffraction pattern shows the presence of ZnO and Fe2O3 with the respective characteristic peaks. Field Emission Scanning Electron Microscope confirms the ZnO nanorods grown using the hydrothermal method and shows the deposition of Fe2O3 nanoparticles on the ZnO nanorods. The electrical analysis using photoconductivity study reveals the formation of p-n junction in both the samples. The fabricated MMO sensor when subjected to piezoelectric sensing set up gave an improved output voltage of 1.32 V for 1 g input acceleration compared to the other. Similarly, when both the sensors were exposed to gas sensing setup, improved sensitivity of 7.66 and 0.791 for 100 ppm of Carbon Monoxide and Methane at room temperature respectively was obtained when compared to the other sensor fabricated.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2021.130248</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2021-10, Vol.301, p.130248, Article 130248
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_journals_2560875320
source ScienceDirect Freedom Collection
subjects Acceleration
Diffraction patterns
Ferric oxide
Field emission microscopy
Gas
Gas sensors
Materials science
Metal oxides
Mixed Metal
Nanoparticle
Nanoparticles
Nanorods
P-n junctions
Photoconductivity
Piezoelectric
Piezoelectricity
Room temperature
Sensor
Sensors
Zinc oxide
Zinc oxides
title Experimental verification of mixed metal oxide-based sensor for multiple sensing application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20verification%20of%20mixed%20metal%20oxide-based%20sensor%20for%20multiple%20sensing%20application&rft.jtitle=Materials%20letters&rft.au=Ramany,%20Kiruthika&rft.date=2021-10-15&rft.volume=301&rft.spage=130248&rft.pages=130248-&rft.artnum=130248&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2021.130248&rft_dat=%3Cproquest_cross%3E2560875320%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-6133dbf78d31ee80dded43bc660ff63bf118e7baa687a6340f83e706a13df5173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560875320&rft_id=info:pmid/&rfr_iscdi=true