Loading…

Chains in evolution algebras

In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications 2021-08, Vol.622, p.104-149
Main Authors: Cabrera Casado, Yolanda, Cardoso Gonçalves, Maria Inez, Gonçalves, Daniel, Martín Barquero, Dolores, Martín González, Cándido
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53
cites cdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53
container_end_page 149
container_issue
container_start_page 104
container_title Linear algebra and its applications
container_volume 622
creator Cabrera Casado, Yolanda
Cardoso Gonçalves, Maria Inez
Gonçalves, Daniel
Martín Barquero, Dolores
Martín González, Cándido
description In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras.
doi_str_mv 10.1016/j.laa.2021.03.026
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560875711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521001300</els_id><sourcerecordid>2560875711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gOCh4Ll1kjRJgydZXBUWvOg5JOlUU2q7Jt0F394s61kYmMP838zwEXJNoaJA5V1fDdZWDBitgFfA5AlZ0EbxkjZCnpIFAKtLrrQ4Jxcp9QBQK2ALcrP6tGFMRRgL3E_Dbg7TWNjhA1206ZKcdXZIePXXl-R9_fi2ei43r08vq4dN6bls5lJr3QrbehTMMu0lq3UuZFIC1Q0HW_uubZVzeWSpAOa49U7VDFE67QRfktvj3m2cvneYZtNPuzjmk4YJCY0SitKcoseUj1NKETuzjeHLxh9DwRwkmN5kCeYgwQA3WUJm7o8M5vf3AaNJPuDosQ0R_WzaKfxD_wLrqWJT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560875711</pqid></control><display><type>article</type><title>Chains in evolution algebras</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Cabrera Casado, Yolanda ; Cardoso Gonçalves, Maria Inez ; Gonçalves, Daniel ; Martín Barquero, Dolores ; Martín González, Cándido</creator><creatorcontrib>Cabrera Casado, Yolanda ; Cardoso Gonçalves, Maria Inez ; Gonçalves, Daniel ; Martín Barquero, Dolores ; Martín González, Cándido</creatorcontrib><description>In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.03.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Annihilator ; Diagonalizable evolution algebra ; Evolution ; Evolution algebra ; Isomorphism ; Linear algebra ; Socle</subject><ispartof>Linear algebra and its applications, 2021-08, Vol.622, p.104-149</ispartof><rights>2021 The Authors</rights><rights>Copyright American Elsevier Company, Inc. Aug 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</citedby><cites>FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</cites><orcidid>0000-0003-4299-4392 ; 0000-0002-6261-7300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cabrera Casado, Yolanda</creatorcontrib><creatorcontrib>Cardoso Gonçalves, Maria Inez</creatorcontrib><creatorcontrib>Gonçalves, Daniel</creatorcontrib><creatorcontrib>Martín Barquero, Dolores</creatorcontrib><creatorcontrib>Martín González, Cándido</creatorcontrib><title>Chains in evolution algebras</title><title>Linear algebra and its applications</title><description>In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras.</description><subject>Algebra</subject><subject>Annihilator</subject><subject>Diagonalizable evolution algebra</subject><subject>Evolution</subject><subject>Evolution algebra</subject><subject>Isomorphism</subject><subject>Linear algebra</subject><subject>Socle</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gOCh4Ll1kjRJgydZXBUWvOg5JOlUU2q7Jt0F394s61kYmMP838zwEXJNoaJA5V1fDdZWDBitgFfA5AlZ0EbxkjZCnpIFAKtLrrQ4Jxcp9QBQK2ALcrP6tGFMRRgL3E_Dbg7TWNjhA1206ZKcdXZIePXXl-R9_fi2ei43r08vq4dN6bls5lJr3QrbehTMMu0lq3UuZFIC1Q0HW_uubZVzeWSpAOa49U7VDFE67QRfktvj3m2cvneYZtNPuzjmk4YJCY0SitKcoseUj1NKETuzjeHLxh9DwRwkmN5kCeYgwQA3WUJm7o8M5vf3AaNJPuDosQ0R_WzaKfxD_wLrqWJT</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cabrera Casado, Yolanda</creator><creator>Cardoso Gonçalves, Maria Inez</creator><creator>Gonçalves, Daniel</creator><creator>Martín Barquero, Dolores</creator><creator>Martín González, Cándido</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0002-6261-7300</orcidid></search><sort><creationdate>20210801</creationdate><title>Chains in evolution algebras</title><author>Cabrera Casado, Yolanda ; Cardoso Gonçalves, Maria Inez ; Gonçalves, Daniel ; Martín Barquero, Dolores ; Martín González, Cándido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Annihilator</topic><topic>Diagonalizable evolution algebra</topic><topic>Evolution</topic><topic>Evolution algebra</topic><topic>Isomorphism</topic><topic>Linear algebra</topic><topic>Socle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera Casado, Yolanda</creatorcontrib><creatorcontrib>Cardoso Gonçalves, Maria Inez</creatorcontrib><creatorcontrib>Gonçalves, Daniel</creatorcontrib><creatorcontrib>Martín Barquero, Dolores</creatorcontrib><creatorcontrib>Martín González, Cándido</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrera Casado, Yolanda</au><au>Cardoso Gonçalves, Maria Inez</au><au>Gonçalves, Daniel</au><au>Martín Barquero, Dolores</au><au>Martín González, Cándido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chains in evolution algebras</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>622</volume><spage>104</spage><epage>149</epage><pages>104-149</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.03.026</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0002-6261-7300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-08, Vol.622, p.104-149
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2560875711
source ScienceDirect Freedom Collection 2022-2024
subjects Algebra
Annihilator
Diagonalizable evolution algebra
Evolution
Evolution algebra
Isomorphism
Linear algebra
Socle
title Chains in evolution algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chains%20in%20evolution%20algebras&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Cabrera%20Casado,%20Yolanda&rft.date=2021-08-01&rft.volume=622&rft.spage=104&rft.epage=149&rft.pages=104-149&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.03.026&rft_dat=%3Cproquest_cross%3E2560875711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560875711&rft_id=info:pmid/&rfr_iscdi=true