Loading…
Chains in evolution algebras
In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the...
Saved in:
Published in: | Linear algebra and its applications 2021-08, Vol.622, p.104-149 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53 |
container_end_page | 149 |
container_issue | |
container_start_page | 104 |
container_title | Linear algebra and its applications |
container_volume | 622 |
creator | Cabrera Casado, Yolanda Cardoso Gonçalves, Maria Inez Gonçalves, Daniel Martín Barquero, Dolores Martín González, Cándido |
description | In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras. |
doi_str_mv | 10.1016/j.laa.2021.03.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560875711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521001300</els_id><sourcerecordid>2560875711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gOCh4Ll1kjRJgydZXBUWvOg5JOlUU2q7Jt0F394s61kYmMP838zwEXJNoaJA5V1fDdZWDBitgFfA5AlZ0EbxkjZCnpIFAKtLrrQ4Jxcp9QBQK2ALcrP6tGFMRRgL3E_Dbg7TWNjhA1206ZKcdXZIePXXl-R9_fi2ei43r08vq4dN6bls5lJr3QrbehTMMu0lq3UuZFIC1Q0HW_uubZVzeWSpAOa49U7VDFE67QRfktvj3m2cvneYZtNPuzjmk4YJCY0SitKcoseUj1NKETuzjeHLxh9DwRwkmN5kCeYgwQA3WUJm7o8M5vf3AaNJPuDosQ0R_WzaKfxD_wLrqWJT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560875711</pqid></control><display><type>article</type><title>Chains in evolution algebras</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Cabrera Casado, Yolanda ; Cardoso Gonçalves, Maria Inez ; Gonçalves, Daniel ; Martín Barquero, Dolores ; Martín González, Cándido</creator><creatorcontrib>Cabrera Casado, Yolanda ; Cardoso Gonçalves, Maria Inez ; Gonçalves, Daniel ; Martín Barquero, Dolores ; Martín González, Cándido</creatorcontrib><description>In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.03.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Annihilator ; Diagonalizable evolution algebra ; Evolution ; Evolution algebra ; Isomorphism ; Linear algebra ; Socle</subject><ispartof>Linear algebra and its applications, 2021-08, Vol.622, p.104-149</ispartof><rights>2021 The Authors</rights><rights>Copyright American Elsevier Company, Inc. Aug 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</citedby><cites>FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</cites><orcidid>0000-0003-4299-4392 ; 0000-0002-6261-7300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cabrera Casado, Yolanda</creatorcontrib><creatorcontrib>Cardoso Gonçalves, Maria Inez</creatorcontrib><creatorcontrib>Gonçalves, Daniel</creatorcontrib><creatorcontrib>Martín Barquero, Dolores</creatorcontrib><creatorcontrib>Martín González, Cándido</creatorcontrib><title>Chains in evolution algebras</title><title>Linear algebra and its applications</title><description>In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras.</description><subject>Algebra</subject><subject>Annihilator</subject><subject>Diagonalizable evolution algebra</subject><subject>Evolution</subject><subject>Evolution algebra</subject><subject>Isomorphism</subject><subject>Linear algebra</subject><subject>Socle</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gOCh4Ll1kjRJgydZXBUWvOg5JOlUU2q7Jt0F394s61kYmMP838zwEXJNoaJA5V1fDdZWDBitgFfA5AlZ0EbxkjZCnpIFAKtLrrQ4Jxcp9QBQK2ALcrP6tGFMRRgL3E_Dbg7TWNjhA1206ZKcdXZIePXXl-R9_fi2ei43r08vq4dN6bls5lJr3QrbehTMMu0lq3UuZFIC1Q0HW_uubZVzeWSpAOa49U7VDFE67QRfktvj3m2cvneYZtNPuzjmk4YJCY0SitKcoseUj1NKETuzjeHLxh9DwRwkmN5kCeYgwQA3WUJm7o8M5vf3AaNJPuDosQ0R_WzaKfxD_wLrqWJT</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cabrera Casado, Yolanda</creator><creator>Cardoso Gonçalves, Maria Inez</creator><creator>Gonçalves, Daniel</creator><creator>Martín Barquero, Dolores</creator><creator>Martín González, Cándido</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0002-6261-7300</orcidid></search><sort><creationdate>20210801</creationdate><title>Chains in evolution algebras</title><author>Cabrera Casado, Yolanda ; Cardoso Gonçalves, Maria Inez ; Gonçalves, Daniel ; Martín Barquero, Dolores ; Martín González, Cándido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Annihilator</topic><topic>Diagonalizable evolution algebra</topic><topic>Evolution</topic><topic>Evolution algebra</topic><topic>Isomorphism</topic><topic>Linear algebra</topic><topic>Socle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cabrera Casado, Yolanda</creatorcontrib><creatorcontrib>Cardoso Gonçalves, Maria Inez</creatorcontrib><creatorcontrib>Gonçalves, Daniel</creatorcontrib><creatorcontrib>Martín Barquero, Dolores</creatorcontrib><creatorcontrib>Martín González, Cándido</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cabrera Casado, Yolanda</au><au>Cardoso Gonçalves, Maria Inez</au><au>Gonçalves, Daniel</au><au>Martín Barquero, Dolores</au><au>Martín González, Cándido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chains in evolution algebras</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>622</volume><spage>104</spage><epage>149</epage><pages>104-149</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this work we approach three-dimensional evolution algebras from certain constructions performed on two-dimensional algebras. More precisely, we provide four different constructions producing three-dimensional evolution algebras from two-dimensional algebras. Also we introduce two parameters, the annihilator stabilizing index and the socle stabilizing index, which are useful tools in the classification theory of these algebras. Finally, we use moduli sets as a convenient way to describe isomorphism classes of algebras.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.03.026</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0002-6261-7300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2021-08, Vol.622, p.104-149 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2560875711 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Algebra Annihilator Diagonalizable evolution algebra Evolution Evolution algebra Isomorphism Linear algebra Socle |
title | Chains in evolution algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chains%20in%20evolution%20algebras&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Cabrera%20Casado,%20Yolanda&rft.date=2021-08-01&rft.volume=622&rft.spage=104&rft.epage=149&rft.pages=104-149&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.03.026&rft_dat=%3Cproquest_cross%3E2560875711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-999d5adce52a29c6249249e266019830a4cfdd7bbc62a1502b3acb742ee6b9b53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560875711&rft_id=info:pmid/&rfr_iscdi=true |