Loading…

Effects of high thermal loads produced by interaction of accelerated plasma with steel surfaces (100Cr6, 16MnCr5, 42CrMo4)

Magnetoplasma compressor (MPC), a type of plasma accelerators, is used for treatment and alloying of steel samples: steel 100Cr6, steel 16MnCr5 and steel 42CrMo4. The high-speed plasma flow formed within the MPC, from helium with 5% of hydrogen as working gas, is directed to the surface of the sampl...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2021-06, Vol.416, p.127157, Article 127157
Main Authors: Trklja Boca, Nora, Mišković, Žarko Z., Mitrović, Radivoje M., Obradović, Bratislav M., Kuraica, Milorad M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetoplasma compressor (MPC), a type of plasma accelerators, is used for treatment and alloying of steel samples: steel 100Cr6, steel 16MnCr5 and steel 42CrMo4. The high-speed plasma flow formed within the MPC, from helium with 5% of hydrogen as working gas, is directed to the surface of the samples. The energy flux density of the plasma flow in the plasma-sample interaction area is 9 Jcm2. Plasma melts the near-surface layer and during the rapid cooling process, a thin layer with structure different from initial is created. Changes in the physical composition of the substrate are monitored depending on the number of plasma treatments. After treatment with a plasma produced within MPC, a significant improvement of hardness has been achieved. [Display omitted] •Steel surfaces are treated with plasma formed within a special type of plasma accelerator: magnetoplasma compressor (MPC).•Every plasma shot deposit 9 J/cm2 of energy to the surface of the treated material.•Hardness of steel 100Cr6, steel 16MnCr5 and steel 42CrMo4 is improved after treatment with plasma produced in MPC.•Smoothing of the peripheral region of the surface microrelief occurs after a sufficient number of the plasma treatments.•There is a phase change from a singly α-Fe to combination of α and γ-Fe after steel 100Cr6 has been treated with plasma pulses.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2021.127157