Loading…

Distributed optimization of general linear multi-agent systems with external disturbance

In this paper, we consider the distributed optimization problems with linear coupling constraint of general homogeneous and heterogeneous linear multi-agent systems under weighted-balanced and strongly connected digraphs. In order to control all agents converge to the optimal output, we propose dist...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Franklin Institute 2021-07, Vol.358 (11), p.5951-5970
Main Authors: Li, Shiling, Nian, Xiaohong, Deng, Zhenhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c273t-7d7e70ebdfb988c88a115dea62e85a299e447b37328517d91a293b673edc58fc3
cites cdi_FETCH-LOGICAL-c273t-7d7e70ebdfb988c88a115dea62e85a299e447b37328517d91a293b673edc58fc3
container_end_page 5970
container_issue 11
container_start_page 5951
container_title Journal of the Franklin Institute
container_volume 358
creator Li, Shiling
Nian, Xiaohong
Deng, Zhenhua
description In this paper, we consider the distributed optimization problems with linear coupling constraint of general homogeneous and heterogeneous linear multi-agent systems under weighted-balanced and strongly connected digraphs. In order to control all agents converge to the optimal output, we propose distributed control laws, therein, the optimal output can make the global cost function reach minimum. Then we guarantee the convergence of the proposed algorithms by the properties of Laplacian matrix and Lyapunov stability theorem. Furthermore, we extend the result of heterogeneous linear multi-agent system to the case that dynamics of agents are subject to external disturbances, and prove that the algorithm designed by internal model principle can make all agents reach the optimal output exactly. Finally, we provide examples to illustrate the effectiveness of the proposed distributed algorithms.
doi_str_mv 10.1016/j.jfranklin.2021.05.024
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561103265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003221003215</els_id><sourcerecordid>2561103265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-7d7e70ebdfb988c88a115dea62e85a299e447b37328517d91a293b673edc58fc3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwG7DEOcGPOk6OVXlKlbiAxM1y7A045FFsByi_HldFXDmtdjUz2vkQOqckp4QWl23eNl4Pb50bckYYzYnICVscoBktZZWxouKHaEaSNCOEs2N0EkKbVkkJmaHnKxeid_UUweJxE13vvnV044DHBr_AAF53OEWD9rifuugyna4Rh22I0Af86eIrhq8IfkhCm8ImX-vBwCk6anQX4Ox3ztHTzfXj6i5bP9zer5brzDDJYyatBEmgtk1dlaUpS02psKALBqXQrKpgsZA1l5yVgkpb0XTjdSE5WCPKxvA5utjnbvz4PkGIqh2n3TNBMVFQmioXIqnkXmX8GIKHRm2867XfKkrUDqNq1R9GtcOoiFAJY3Iu905IJT4ceBWMg1TQOg8mKju6fzN-AD0LgaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561103265</pqid></control><display><type>article</type><title>Distributed optimization of general linear multi-agent systems with external disturbance</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Li, Shiling ; Nian, Xiaohong ; Deng, Zhenhua</creator><creatorcontrib>Li, Shiling ; Nian, Xiaohong ; Deng, Zhenhua</creatorcontrib><description>In this paper, we consider the distributed optimization problems with linear coupling constraint of general homogeneous and heterogeneous linear multi-agent systems under weighted-balanced and strongly connected digraphs. In order to control all agents converge to the optimal output, we propose distributed control laws, therein, the optimal output can make the global cost function reach minimum. Then we guarantee the convergence of the proposed algorithms by the properties of Laplacian matrix and Lyapunov stability theorem. Furthermore, we extend the result of heterogeneous linear multi-agent system to the case that dynamics of agents are subject to external disturbances, and prove that the algorithm designed by internal model principle can make all agents reach the optimal output exactly. Finally, we provide examples to illustrate the effectiveness of the proposed distributed algorithms.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2021.05.024</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Algorithms ; Control theory ; Convergence ; Cost function ; Coupling ; Graph theory ; Internal model principle ; Linear systems ; Mathematical functions ; Multiagent systems ; Optimization ; Topology</subject><ispartof>Journal of the Franklin Institute, 2021-07, Vol.358 (11), p.5951-5970</ispartof><rights>2021 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-7d7e70ebdfb988c88a115dea62e85a299e447b37328517d91a293b673edc58fc3</citedby><cites>FETCH-LOGICAL-c273t-7d7e70ebdfb988c88a115dea62e85a299e447b37328517d91a293b673edc58fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003221003215$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3562,27923,27924,46002</link.rule.ids></links><search><creatorcontrib>Li, Shiling</creatorcontrib><creatorcontrib>Nian, Xiaohong</creatorcontrib><creatorcontrib>Deng, Zhenhua</creatorcontrib><title>Distributed optimization of general linear multi-agent systems with external disturbance</title><title>Journal of the Franklin Institute</title><description>In this paper, we consider the distributed optimization problems with linear coupling constraint of general homogeneous and heterogeneous linear multi-agent systems under weighted-balanced and strongly connected digraphs. In order to control all agents converge to the optimal output, we propose distributed control laws, therein, the optimal output can make the global cost function reach minimum. Then we guarantee the convergence of the proposed algorithms by the properties of Laplacian matrix and Lyapunov stability theorem. Furthermore, we extend the result of heterogeneous linear multi-agent system to the case that dynamics of agents are subject to external disturbances, and prove that the algorithm designed by internal model principle can make all agents reach the optimal output exactly. Finally, we provide examples to illustrate the effectiveness of the proposed distributed algorithms.</description><subject>Algorithms</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Coupling</subject><subject>Graph theory</subject><subject>Internal model principle</subject><subject>Linear systems</subject><subject>Mathematical functions</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Topology</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwG7DEOcGPOk6OVXlKlbiAxM1y7A045FFsByi_HldFXDmtdjUz2vkQOqckp4QWl23eNl4Pb50bckYYzYnICVscoBktZZWxouKHaEaSNCOEs2N0EkKbVkkJmaHnKxeid_UUweJxE13vvnV044DHBr_AAF53OEWD9rifuugyna4Rh22I0Af86eIrhq8IfkhCm8ImX-vBwCk6anQX4Ox3ztHTzfXj6i5bP9zer5brzDDJYyatBEmgtk1dlaUpS02psKALBqXQrKpgsZA1l5yVgkpb0XTjdSE5WCPKxvA5utjnbvz4PkGIqh2n3TNBMVFQmioXIqnkXmX8GIKHRm2867XfKkrUDqNq1R9GtcOoiFAJY3Iu905IJT4ceBWMg1TQOg8mKju6fzN-AD0LgaI</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Li, Shiling</creator><creator>Nian, Xiaohong</creator><creator>Deng, Zhenhua</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202107</creationdate><title>Distributed optimization of general linear multi-agent systems with external disturbance</title><author>Li, Shiling ; Nian, Xiaohong ; Deng, Zhenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-7d7e70ebdfb988c88a115dea62e85a299e447b37328517d91a293b673edc58fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Coupling</topic><topic>Graph theory</topic><topic>Internal model principle</topic><topic>Linear systems</topic><topic>Mathematical functions</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shiling</creatorcontrib><creatorcontrib>Nian, Xiaohong</creatorcontrib><creatorcontrib>Deng, Zhenhua</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shiling</au><au>Nian, Xiaohong</au><au>Deng, Zhenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed optimization of general linear multi-agent systems with external disturbance</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2021-07</date><risdate>2021</risdate><volume>358</volume><issue>11</issue><spage>5951</spage><epage>5970</epage><pages>5951-5970</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>In this paper, we consider the distributed optimization problems with linear coupling constraint of general homogeneous and heterogeneous linear multi-agent systems under weighted-balanced and strongly connected digraphs. In order to control all agents converge to the optimal output, we propose distributed control laws, therein, the optimal output can make the global cost function reach minimum. Then we guarantee the convergence of the proposed algorithms by the properties of Laplacian matrix and Lyapunov stability theorem. Furthermore, we extend the result of heterogeneous linear multi-agent system to the case that dynamics of agents are subject to external disturbances, and prove that the algorithm designed by internal model principle can make all agents reach the optimal output exactly. Finally, we provide examples to illustrate the effectiveness of the proposed distributed algorithms.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2021.05.024</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2021-07, Vol.358 (11), p.5951-5970
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_2561103265
source ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT]
subjects Algorithms
Control theory
Convergence
Cost function
Coupling
Graph theory
Internal model principle
Linear systems
Mathematical functions
Multiagent systems
Optimization
Topology
title Distributed optimization of general linear multi-agent systems with external disturbance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20optimization%20of%20general%20linear%20multi-agent%20systems%20with%20external%20disturbance&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Li,%20Shiling&rft.date=2021-07&rft.volume=358&rft.issue=11&rft.spage=5951&rft.epage=5970&rft.pages=5951-5970&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2021.05.024&rft_dat=%3Cproquest_cross%3E2561103265%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c273t-7d7e70ebdfb988c88a115dea62e85a299e447b37328517d91a293b673edc58fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561103265&rft_id=info:pmid/&rfr_iscdi=true