Loading…
Microbial Find, Inform, and Test Model for Identifying Spatially Distributed Contamination Sources: Framework Foundation and Demonstration of Ruminant Bacteroides Abundance in River Sediments
Microbial pollution in rivers poses known ecological and health risks, yet causal and mechanistic linkages to sources remain difficult to establish. Host-associated microbial source tracking (MST) markers help to assess the microbial risks by linking hosts to contamination but do not identify the so...
Saved in:
Published in: | Environmental science & technology 2021-08, Vol.55 (15), p.10451-10461 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microbial pollution in rivers poses known ecological and health risks, yet causal and mechanistic linkages to sources remain difficult to establish. Host-associated microbial source tracking (MST) markers help to assess the microbial risks by linking hosts to contamination but do not identify the source locations. Land-use regression (LUR) models have been used to screen the source locations using spatial predictors but could be improved by characterizing transport (i.e., hauling, decay overland, and downstream). We introduce the microbial Find, Inform, and Test (FIT) framework, which expands previous LUR approaches and develops novel spatial predictor models to characterize the transported contributions. We applied FIT to characterize the sources of BoBac, a ruminant Bacteroides MST marker, quantified in riverbed sediment samples from Kewaunee County, Wisconsin. A 1 standard deviation increase in contributions from land-applied manure hauled from animal feeding operations (AFOs) was associated with a 77% (p-value |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/acs.est.1c01602 |