Loading…
Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications
A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na 2 SO 4 electrolyte solution. Optical properties analysis showed the shifting of optical ban...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2021-08, Vol.32 (16), p.20946-20954 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3 |
container_end_page | 20954 |
container_issue | 16 |
container_start_page | 20946 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Khan, Humaira Rashid Akram, Bilal Aamir, Muhammad Malik, Muhammad Azad Tahir, Asif Ali Choudhary, Muhammad Aziz Akhtar, Javeed |
description | A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na
2
SO
4
electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn
1−
x
Mn
x
O (
x
= 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn
0.85
Mn
0.15
O was found highest with photocurrent density of 3.81 mA/cm
2
. This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn
1−
x
Mn
x
O has a significant potential for PEC water splitting with further tailoring of their electronic properties. |
doi_str_mv | 10.1007/s10854-021-06471-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561133444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561133444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4GrAdTS_k2QpxapQ6UZB3YRMJtNOmU7GJEXc-Q6-oU9idAR3ru69cL7vwgHgFKNzjJC4iBhJziAiGKKSCQzlHphgLihkkjzugwlSXEDGCTkERzFuEMoYlRPwNDdVaK1Jre8L3xR3_ef7x3O_LIa1T970vnaxaHwYb9c5m4K3a7fNma54NcmFIg5dm1Lbrwoz5HUsi8fgoDFddCe_cwoe5lf3sxu4WF7fzi4X0FKsEhSCO-VQY7njlknLSlGTxinVSFqXVcUIopmgUlV1baRAplJcGWRKqmqhLJ2Cs7F3CP5l52LSG78LfX6pCS8xppQxlikyUjb4GINr9BDarQlvGiP9rVCPCnVWqH8UaplDdAzFDPcrF_6q_0l9AZVTdrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561133444</pqid></control><display><type>article</type><title>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</title><source>Springer Nature</source><creator>Khan, Humaira Rashid ; Akram, Bilal ; Aamir, Muhammad ; Malik, Muhammad Azad ; Tahir, Asif Ali ; Choudhary, Muhammad Aziz ; Akhtar, Javeed</creator><creatorcontrib>Khan, Humaira Rashid ; Akram, Bilal ; Aamir, Muhammad ; Malik, Muhammad Azad ; Tahir, Asif Ali ; Choudhary, Muhammad Aziz ; Akhtar, Javeed</creatorcontrib><description>A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na
2
SO
4
electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn
1−
x
Mn
x
O (
x
= 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn
0.85
Mn
0.15
O was found highest with photocurrent density of 3.81 mA/cm
2
. This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn
1−
x
Mn
x
O has a significant potential for PEC water splitting with further tailoring of their electronic properties.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06471-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerosols ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Crystallites ; Density ; Electrolytes ; Energy gap ; Glass substrates ; Homogeneous structure ; Incorporation ; Manganese ; Materials Science ; Morphology ; Optical and Electronic Materials ; Optical properties ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Semiconductors ; Thin films ; Water splitting ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2021-08, Vol.32 (16), p.20946-20954</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</citedby><cites>FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</cites><orcidid>0000-0001-5938-3315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Khan, Humaira Rashid</creatorcontrib><creatorcontrib>Akram, Bilal</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Malik, Muhammad Azad</creatorcontrib><creatorcontrib>Tahir, Asif Ali</creatorcontrib><creatorcontrib>Choudhary, Muhammad Aziz</creatorcontrib><creatorcontrib>Akhtar, Javeed</creatorcontrib><title>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na
2
SO
4
electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn
1−
x
Mn
x
O (
x
= 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn
0.85
Mn
0.15
O was found highest with photocurrent density of 3.81 mA/cm
2
. This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn
1−
x
Mn
x
O has a significant potential for PEC water splitting with further tailoring of their electronic properties.</description><subject>Aerosols</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Density</subject><subject>Electrolytes</subject><subject>Energy gap</subject><subject>Glass substrates</subject><subject>Homogeneous structure</subject><subject>Incorporation</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Semiconductors</subject><subject>Thin films</subject><subject>Water splitting</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4GrAdTS_k2QpxapQ6UZB3YRMJtNOmU7GJEXc-Q6-oU9idAR3ru69cL7vwgHgFKNzjJC4iBhJziAiGKKSCQzlHphgLihkkjzugwlSXEDGCTkERzFuEMoYlRPwNDdVaK1Jre8L3xR3_ef7x3O_LIa1T970vnaxaHwYb9c5m4K3a7fNma54NcmFIg5dm1Lbrwoz5HUsi8fgoDFddCe_cwoe5lf3sxu4WF7fzi4X0FKsEhSCO-VQY7njlknLSlGTxinVSFqXVcUIopmgUlV1baRAplJcGWRKqmqhLJ2Cs7F3CP5l52LSG78LfX6pCS8xppQxlikyUjb4GINr9BDarQlvGiP9rVCPCnVWqH8UaplDdAzFDPcrF_6q_0l9AZVTdrw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Khan, Humaira Rashid</creator><creator>Akram, Bilal</creator><creator>Aamir, Muhammad</creator><creator>Malik, Muhammad Azad</creator><creator>Tahir, Asif Ali</creator><creator>Choudhary, Muhammad Aziz</creator><creator>Akhtar, Javeed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5938-3315</orcidid></search><sort><creationdate>20210801</creationdate><title>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</title><author>Khan, Humaira Rashid ; Akram, Bilal ; Aamir, Muhammad ; Malik, Muhammad Azad ; Tahir, Asif Ali ; Choudhary, Muhammad Aziz ; Akhtar, Javeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Density</topic><topic>Electrolytes</topic><topic>Energy gap</topic><topic>Glass substrates</topic><topic>Homogeneous structure</topic><topic>Incorporation</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Semiconductors</topic><topic>Thin films</topic><topic>Water splitting</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Humaira Rashid</creatorcontrib><creatorcontrib>Akram, Bilal</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Malik, Muhammad Azad</creatorcontrib><creatorcontrib>Tahir, Asif Ali</creatorcontrib><creatorcontrib>Choudhary, Muhammad Aziz</creatorcontrib><creatorcontrib>Akhtar, Javeed</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Humaira Rashid</au><au>Akram, Bilal</au><au>Aamir, Muhammad</au><au>Malik, Muhammad Azad</au><au>Tahir, Asif Ali</au><au>Choudhary, Muhammad Aziz</au><au>Akhtar, Javeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>32</volume><issue>16</issue><spage>20946</spage><epage>20954</epage><pages>20946-20954</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na
2
SO
4
electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn
1−
x
Mn
x
O (
x
= 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn
0.85
Mn
0.15
O was found highest with photocurrent density of 3.81 mA/cm
2
. This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn
1−
x
Mn
x
O has a significant potential for PEC water splitting with further tailoring of their electronic properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06471-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5938-3315</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-08, Vol.32 (16), p.20946-20954 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2561133444 |
source | Springer Nature |
subjects | Aerosols Characterization and Evaluation of Materials Chemical vapor deposition Chemistry and Materials Science Crystallites Density Electrolytes Energy gap Glass substrates Homogeneous structure Incorporation Manganese Materials Science Morphology Optical and Electronic Materials Optical properties Photoanodes Photoelectric effect Photoelectric emission Semiconductors Thin films Water splitting Zinc oxide |
title | Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Mn%E2%80%93ZnO%20photoanodes%20for%20photoelectrochemical%20water%20splitting%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Khan,%20Humaira%20Rashid&rft.date=2021-08-01&rft.volume=32&rft.issue=16&rft.spage=20946&rft.epage=20954&rft.pages=20946-20954&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06471-8&rft_dat=%3Cproquest_cross%3E2561133444%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561133444&rft_id=info:pmid/&rfr_iscdi=true |