Loading…

Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications

A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na 2 SO 4 electrolyte solution. Optical properties analysis showed the shifting of optical ban...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2021-08, Vol.32 (16), p.20946-20954
Main Authors: Khan, Humaira Rashid, Akram, Bilal, Aamir, Muhammad, Malik, Muhammad Azad, Tahir, Asif Ali, Choudhary, Muhammad Aziz, Akhtar, Javeed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3
cites cdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3
container_end_page 20954
container_issue 16
container_start_page 20946
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Khan, Humaira Rashid
Akram, Bilal
Aamir, Muhammad
Malik, Muhammad Azad
Tahir, Asif Ali
Choudhary, Muhammad Aziz
Akhtar, Javeed
description A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na 2 SO 4 electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn 1− x Mn x O ( x  = 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn 0.85 Mn 0.15 O was found highest with photocurrent density of 3.81 mA/cm 2 . This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn 1− x Mn x O has a significant potential for PEC water splitting with further tailoring of their electronic properties.
doi_str_mv 10.1007/s10854-021-06471-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561133444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561133444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4GrAdTS_k2QpxapQ6UZB3YRMJtNOmU7GJEXc-Q6-oU9idAR3ru69cL7vwgHgFKNzjJC4iBhJziAiGKKSCQzlHphgLihkkjzugwlSXEDGCTkERzFuEMoYlRPwNDdVaK1Jre8L3xR3_ef7x3O_LIa1T970vnaxaHwYb9c5m4K3a7fNma54NcmFIg5dm1Lbrwoz5HUsi8fgoDFddCe_cwoe5lf3sxu4WF7fzi4X0FKsEhSCO-VQY7njlknLSlGTxinVSFqXVcUIopmgUlV1baRAplJcGWRKqmqhLJ2Cs7F3CP5l52LSG78LfX6pCS8xppQxlikyUjb4GINr9BDarQlvGiP9rVCPCnVWqH8UaplDdAzFDPcrF_6q_0l9AZVTdrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561133444</pqid></control><display><type>article</type><title>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</title><source>Springer Nature</source><creator>Khan, Humaira Rashid ; Akram, Bilal ; Aamir, Muhammad ; Malik, Muhammad Azad ; Tahir, Asif Ali ; Choudhary, Muhammad Aziz ; Akhtar, Javeed</creator><creatorcontrib>Khan, Humaira Rashid ; Akram, Bilal ; Aamir, Muhammad ; Malik, Muhammad Azad ; Tahir, Asif Ali ; Choudhary, Muhammad Aziz ; Akhtar, Javeed</creatorcontrib><description>A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na 2 SO 4 electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn 1− x Mn x O ( x  = 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn 0.85 Mn 0.15 O was found highest with photocurrent density of 3.81 mA/cm 2 . This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn 1− x Mn x O has a significant potential for PEC water splitting with further tailoring of their electronic properties.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06471-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerosols ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Chemistry and Materials Science ; Crystallites ; Density ; Electrolytes ; Energy gap ; Glass substrates ; Homogeneous structure ; Incorporation ; Manganese ; Materials Science ; Morphology ; Optical and Electronic Materials ; Optical properties ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Semiconductors ; Thin films ; Water splitting ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2021-08, Vol.32 (16), p.20946-20954</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</citedby><cites>FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</cites><orcidid>0000-0001-5938-3315</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Khan, Humaira Rashid</creatorcontrib><creatorcontrib>Akram, Bilal</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Malik, Muhammad Azad</creatorcontrib><creatorcontrib>Tahir, Asif Ali</creatorcontrib><creatorcontrib>Choudhary, Muhammad Aziz</creatorcontrib><creatorcontrib>Akhtar, Javeed</creatorcontrib><title>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na 2 SO 4 electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn 1− x Mn x O ( x  = 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn 0.85 Mn 0.15 O was found highest with photocurrent density of 3.81 mA/cm 2 . This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn 1− x Mn x O has a significant potential for PEC water splitting with further tailoring of their electronic properties.</description><subject>Aerosols</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Density</subject><subject>Electrolytes</subject><subject>Energy gap</subject><subject>Glass substrates</subject><subject>Homogeneous structure</subject><subject>Incorporation</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Semiconductors</subject><subject>Thin films</subject><subject>Water splitting</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4GrAdTS_k2QpxapQ6UZB3YRMJtNOmU7GJEXc-Q6-oU9idAR3ru69cL7vwgHgFKNzjJC4iBhJziAiGKKSCQzlHphgLihkkjzugwlSXEDGCTkERzFuEMoYlRPwNDdVaK1Jre8L3xR3_ef7x3O_LIa1T970vnaxaHwYb9c5m4K3a7fNma54NcmFIg5dm1Lbrwoz5HUsi8fgoDFddCe_cwoe5lf3sxu4WF7fzi4X0FKsEhSCO-VQY7njlknLSlGTxinVSFqXVcUIopmgUlV1baRAplJcGWRKqmqhLJ2Cs7F3CP5l52LSG78LfX6pCS8xppQxlikyUjb4GINr9BDarQlvGiP9rVCPCnVWqH8UaplDdAzFDPcrF_6q_0l9AZVTdrw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Khan, Humaira Rashid</creator><creator>Akram, Bilal</creator><creator>Aamir, Muhammad</creator><creator>Malik, Muhammad Azad</creator><creator>Tahir, Asif Ali</creator><creator>Choudhary, Muhammad Aziz</creator><creator>Akhtar, Javeed</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5938-3315</orcidid></search><sort><creationdate>20210801</creationdate><title>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</title><author>Khan, Humaira Rashid ; Akram, Bilal ; Aamir, Muhammad ; Malik, Muhammad Azad ; Tahir, Asif Ali ; Choudhary, Muhammad Aziz ; Akhtar, Javeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Density</topic><topic>Electrolytes</topic><topic>Energy gap</topic><topic>Glass substrates</topic><topic>Homogeneous structure</topic><topic>Incorporation</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Semiconductors</topic><topic>Thin films</topic><topic>Water splitting</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Humaira Rashid</creatorcontrib><creatorcontrib>Akram, Bilal</creatorcontrib><creatorcontrib>Aamir, Muhammad</creatorcontrib><creatorcontrib>Malik, Muhammad Azad</creatorcontrib><creatorcontrib>Tahir, Asif Ali</creatorcontrib><creatorcontrib>Choudhary, Muhammad Aziz</creatorcontrib><creatorcontrib>Akhtar, Javeed</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Humaira Rashid</au><au>Akram, Bilal</au><au>Aamir, Muhammad</au><au>Malik, Muhammad Azad</au><au>Tahir, Asif Ali</au><au>Choudhary, Muhammad Aziz</au><au>Akhtar, Javeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>32</volume><issue>16</issue><spage>20946</spage><epage>20954</epage><pages>20946-20954</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>A photoelectrochemical (PEC) water splitting ability of pure ZnO and manganese-incorporated ZnO thin films fabricated via a simple aerosol-assisted chemical vapour deposition (AACVD) method was compared in Na 2 SO 4 electrolyte solution. Optical properties analysis showed the shifting of optical band gap from 3.02 to 2.76 eV as the molar ratio of Mn varies from 0.02 to 0.15. All the compositions of Zn 1− x Mn x O ( x  = 0.02 to 0.15) show superior photocurrent density compared to pure ZnO-based photoanodes. The activity of Zn 0.85 Mn 0.15 O was found highest with photocurrent density of 3.81 mA/cm 2 . This activity enhancement was due to the shifting of the optical band gap in the visible region with the increase in absorption intensity. Moreover, the activity is further affected by the growth of uniform and homogeneous structures onto the photoanodes. The morphology of the films and size of crystallites change by varying amounts of Mn into the ZnO films. Overall, this work demonstrates that Zn 1− x Mn x O has a significant potential for PEC water splitting with further tailoring of their electronic properties.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06471-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5938-3315</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-08, Vol.32 (16), p.20946-20954
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2561133444
source Springer Nature
subjects Aerosols
Characterization and Evaluation of Materials
Chemical vapor deposition
Chemistry and Materials Science
Crystallites
Density
Electrolytes
Energy gap
Glass substrates
Homogeneous structure
Incorporation
Manganese
Materials Science
Morphology
Optical and Electronic Materials
Optical properties
Photoanodes
Photoelectric effect
Photoelectric emission
Semiconductors
Thin films
Water splitting
Zinc oxide
title Fabrication of Mn–ZnO photoanodes for photoelectrochemical water splitting applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Mn%E2%80%93ZnO%20photoanodes%20for%20photoelectrochemical%20water%20splitting%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Khan,%20Humaira%20Rashid&rft.date=2021-08-01&rft.volume=32&rft.issue=16&rft.spage=20946&rft.epage=20954&rft.pages=20946-20954&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06471-8&rft_dat=%3Cproquest_cross%3E2561133444%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-775e9e0fc5e5c48c467d2fe99f83d6bb42035e9389bdda870ab959a0a639d79c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561133444&rft_id=info:pmid/&rfr_iscdi=true