Loading…

Formation of metastable zirconium oxides using pulsed laser deposition of ZrO based target

There is a growing interest about the possibilities for preparation of various zirconium oxides from scientific as well as application point of view. Laser ablation of solid target consisting of sintered grains of metallic hexagonal Zr3O and monoclinic ZrO2 results in evaporation of Zr, O species (i...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2019-10, Vol.613 (1), p.12016
Main Authors: Křenek, Tomáš, Mikysek, Petr, Pola, Michal, Vála, Lukáš, Melaré, Estela, Jandová, Věra, Vavruňková, Veronika, Rieger, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is a growing interest about the possibilities for preparation of various zirconium oxides from scientific as well as application point of view. Laser ablation of solid target consisting of sintered grains of metallic hexagonal Zr3O and monoclinic ZrO2 results in evaporation of Zr, O species (ions, atoms) and subsequent deposition of Zr-O film. Ta and Cu have been used as substrates. The films were analyzed by SEM-EDX, Raman and FTIR spectroscopy and X-ray diffraction. SEM analysis revealed µm/sub-µm sized roundshape and ring-like objects on continuous coat. Using Raman spectroscopy broad peaks which can suggest partial laser induced amorphization of Zr-O deposits were detected. FTIR spectroscopy shows bands which are assignable to Zr-O vibration of nanostructured zirconia. X-ray diffraction analysis provides more explicit assignment of deposited phases where the deposit on Ta exhibits presence of monoclinic ZrO2, oxygen deficient rhombohedric Zr3O and interestingly indicates presence of high-pressure orthorhombic ZrO2 phase. The coat on Cu consists of monoclinic ZrO2, rhombohedric Zr3O, and metastable tetragonal ZrO2 phase.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/613/1/012016