Loading…
Low-voltage dynamic comparator using positive feedback bulk effect on a floating inverter amplifier
This work presents the design of a low voltage dynamic comparator for low-power ADC applications. The dynamic comparator uses a pre-amplifier powered by a floating reservoir capacitor and a positive feedback bulk structure. The output stage comprises a simple circuit to reduce the total voltage over...
Saved in:
Published in: | Analog integrated circuits and signal processing 2021-09, Vol.108 (3), p.511-524 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents the design of a low voltage dynamic comparator for low-power ADC applications. The dynamic comparator uses a pre-amplifier powered by a floating reservoir capacitor and a positive feedback bulk structure. The output stage comprises a simple circuit to reduce the total voltage overhead necessary to define the logic levels. The powering scheme of the pre-amplifier, with a floating reservoir capacitor, contributes to reduce the impacts of global process variability. The positive feedback bulk structure lowers the threshold voltages of the pre-amplifier transistors at the sampling phase. Such structure also provides positive feedback signal during the comparison phase to provide extra transconductance. The proposed dynamic comparator is designed and simulated in a 28 nm CMOS technology and reaches an IRN below of the quantization noise of a 10 bits differential ADCs working with 600 mV power supply. The dynamic comparator achieves 237 μV input-referred noise, while consuming only 38.8 fJ per comparison and having a nominal delay of 5.77 ns. |
---|---|
ISSN: | 0925-1030 1573-1979 |
DOI: | 10.1007/s10470-021-01891-2 |