Loading…
Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method
This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is de...
Saved in:
Published in: | International journal of material forming 2021-09, Vol.14 (5), p.1031-1041 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3 |
container_end_page | 1041 |
container_issue | 5 |
container_start_page | 1031 |
container_title | International journal of material forming |
container_volume | 14 |
creator | Shahzamanian, M. M. Wu, P. D. |
description | This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone. |
doi_str_mv | 10.1007/s12289-021-01619-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561506890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561506890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEhX0BZgsscBgODuJk4yo0IIoYgBmy3Hs1lUTB9sZ-vY4BMHGLXfD9_8nfUlyQeCGABS3nlBaVhgowUAYqXBxlMxIxQAzSrLj3xvYaTL3fgdxUloUNJsl-7cwNAdkNdLWtabboL1pTUCNERsnWnS1XN9fo96pxshgbDeSojPeBmd7I5HfKhVQq4LYezT4sWA1OB_B1jZqj0yHXvDzCGxtc56c6Mip-c8-Sz6WD--LR7x-XT0t7tZYpqQKOE8ZEJkrzcpUgmgUq3PNZM1qybKsUrImdVXWUEiVA1EgIU-zmjRCK6El0-lZcjn19s5-DsoHvrOD6-JLTnNGcmBlBZGiEyWd9d4pzXtnWuEOnAAfxfJJLI9i-bdYXsRQOoV8hLuNcn_V_6S-ANWofAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561506890</pqid></control><display><type>article</type><title>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</title><source>Springer Link</source><creator>Shahzamanian, M. M. ; Wu, P. D.</creator><creatorcontrib>Shahzamanian, M. M. ; Wu, P. D.</creatorcontrib><description>This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-021-01619-7</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Algorithms ; Aluminum base alloys ; CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Defects ; Engineering ; Extreme values ; Forming limit diagrams ; Grooves ; Machines ; Manufacturing ; Materials Science ; Mechanical Engineering ; Original Research ; Processes</subject><ispartof>International journal of material forming, 2021-09, Vol.14 (5), p.1031-1041</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</citedby><cites>FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shahzamanian, M. M.</creatorcontrib><creatorcontrib>Wu, P. D.</creatorcontrib><title>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone.</description><subject>Algorithms</subject><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Defects</subject><subject>Engineering</subject><subject>Extreme values</subject><subject>Forming limit diagrams</subject><subject>Grooves</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Original Research</subject><subject>Processes</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEhX0BZgsscBgODuJk4yo0IIoYgBmy3Hs1lUTB9sZ-vY4BMHGLXfD9_8nfUlyQeCGABS3nlBaVhgowUAYqXBxlMxIxQAzSrLj3xvYaTL3fgdxUloUNJsl-7cwNAdkNdLWtabboL1pTUCNERsnWnS1XN9fo96pxshgbDeSojPeBmd7I5HfKhVQq4LYezT4sWA1OB_B1jZqj0yHXvDzCGxtc56c6Mip-c8-Sz6WD--LR7x-XT0t7tZYpqQKOE8ZEJkrzcpUgmgUq3PNZM1qybKsUrImdVXWUEiVA1EgIU-zmjRCK6El0-lZcjn19s5-DsoHvrOD6-JLTnNGcmBlBZGiEyWd9d4pzXtnWuEOnAAfxfJJLI9i-bdYXsRQOoV8hLuNcn_V_6S-ANWofAY</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Shahzamanian, M. M.</creator><creator>Wu, P. D.</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</title><author>Shahzamanian, M. M. ; Wu, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Defects</topic><topic>Engineering</topic><topic>Extreme values</topic><topic>Forming limit diagrams</topic><topic>Grooves</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Original Research</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahzamanian, M. M.</creatorcontrib><creatorcontrib>Wu, P. D.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahzamanian, M. M.</au><au>Wu, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>1031</spage><epage>1041</epage><pages>1031-1041</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-021-01619-7</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1960-6206 |
ispartof | International journal of material forming, 2021-09, Vol.14 (5), p.1031-1041 |
issn | 1960-6206 1960-6214 |
language | eng |
recordid | cdi_proquest_journals_2561506890 |
source | Springer Link |
subjects | Algorithms Aluminum base alloys CAE) and Design Computational Intelligence Computer-Aided Engineering (CAD Defects Engineering Extreme values Forming limit diagrams Grooves Machines Manufacturing Materials Science Mechanical Engineering Original Research Processes |
title | Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20forming%20limit%20diagram%20(FLD)%20prediction%20of%20anisotropic%20sheet%20metals%20using%20Gurson%20model%20in%20M-K%20method&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Shahzamanian,%20M.%20M.&rft.date=2021-09-01&rft.volume=14&rft.issue=5&rft.spage=1031&rft.epage=1041&rft.pages=1031-1041&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-021-01619-7&rft_dat=%3Cproquest_cross%3E2561506890%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561506890&rft_id=info:pmid/&rfr_iscdi=true |