Loading…

Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method

This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is de...

Full description

Saved in:
Bibliographic Details
Published in:International journal of material forming 2021-09, Vol.14 (5), p.1031-1041
Main Authors: Shahzamanian, M. M., Wu, P. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3
cites cdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3
container_end_page 1041
container_issue 5
container_start_page 1031
container_title International journal of material forming
container_volume 14
creator Shahzamanian, M. M.
Wu, P. D.
description This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone.
doi_str_mv 10.1007/s12289-021-01619-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2561506890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561506890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEhX0BZgsscBgODuJk4yo0IIoYgBmy3Hs1lUTB9sZ-vY4BMHGLXfD9_8nfUlyQeCGABS3nlBaVhgowUAYqXBxlMxIxQAzSrLj3xvYaTL3fgdxUloUNJsl-7cwNAdkNdLWtabboL1pTUCNERsnWnS1XN9fo96pxshgbDeSojPeBmd7I5HfKhVQq4LYezT4sWA1OB_B1jZqj0yHXvDzCGxtc56c6Mip-c8-Sz6WD--LR7x-XT0t7tZYpqQKOE8ZEJkrzcpUgmgUq3PNZM1qybKsUrImdVXWUEiVA1EgIU-zmjRCK6El0-lZcjn19s5-DsoHvrOD6-JLTnNGcmBlBZGiEyWd9d4pzXtnWuEOnAAfxfJJLI9i-bdYXsRQOoV8hLuNcn_V_6S-ANWofAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561506890</pqid></control><display><type>article</type><title>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</title><source>Springer Link</source><creator>Shahzamanian, M. M. ; Wu, P. D.</creator><creatorcontrib>Shahzamanian, M. M. ; Wu, P. D.</creatorcontrib><description>This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-021-01619-7</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Algorithms ; Aluminum base alloys ; CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Defects ; Engineering ; Extreme values ; Forming limit diagrams ; Grooves ; Machines ; Manufacturing ; Materials Science ; Mechanical Engineering ; Original Research ; Processes</subject><ispartof>International journal of material forming, 2021-09, Vol.14 (5), p.1031-1041</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</citedby><cites>FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shahzamanian, M. M.</creatorcontrib><creatorcontrib>Wu, P. D.</creatorcontrib><title>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone.</description><subject>Algorithms</subject><subject>Aluminum base alloys</subject><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Defects</subject><subject>Engineering</subject><subject>Extreme values</subject><subject>Forming limit diagrams</subject><subject>Grooves</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Original Research</subject><subject>Processes</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEhX0BZgsscBgODuJk4yo0IIoYgBmy3Hs1lUTB9sZ-vY4BMHGLXfD9_8nfUlyQeCGABS3nlBaVhgowUAYqXBxlMxIxQAzSrLj3xvYaTL3fgdxUloUNJsl-7cwNAdkNdLWtabboL1pTUCNERsnWnS1XN9fo96pxshgbDeSojPeBmd7I5HfKhVQq4LYezT4sWA1OB_B1jZqj0yHXvDzCGxtc56c6Mip-c8-Sz6WD--LR7x-XT0t7tZYpqQKOE8ZEJkrzcpUgmgUq3PNZM1qybKsUrImdVXWUEiVA1EgIU-zmjRCK6El0-lZcjn19s5-DsoHvrOD6-JLTnNGcmBlBZGiEyWd9d4pzXtnWuEOnAAfxfJJLI9i-bdYXsRQOoV8hLuNcn_V_6S-ANWofAY</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Shahzamanian, M. M.</creator><creator>Wu, P. D.</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</title><author>Shahzamanian, M. M. ; Wu, P. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Aluminum base alloys</topic><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Defects</topic><topic>Engineering</topic><topic>Extreme values</topic><topic>Forming limit diagrams</topic><topic>Grooves</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Original Research</topic><topic>Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahzamanian, M. M.</creatorcontrib><creatorcontrib>Wu, P. D.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahzamanian, M. M.</au><au>Wu, P. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>1031</spage><epage>1041</epage><pages>1031-1041</pages><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>This study uses the Marciniak and Kuczynski (M-K) method to present an analytical forming limit diagram (FLD) for sheet metals. The procedure for the analytical FLD prediction is described in detail and step-wise manner, and an algorithm is written using MATLAB. First, an appropriate algorithm is determined to establish the theoretical analyses, and various anisotropic yield functions, such as Hill’s 48, Barlat 89, and Hosford, are considered. The predicted FLDs are compared with experiments involving a typical AA6016-T4 aluminum alloy. Second, the Gurson model that considers damage growth is implemented when Hosford is the yield function, as Hosford criterion predicts the best comparable analytical FLD with experiments among the yield functions. Third, a parametric study is performed to investigate the effects of parameters on the FLD prediction. Results indicate that an extremely low value for the initial void volume fraction in the safe and groove zones has minimal effects on the FLD prediction. Lastly, the values of void volume fractions are calculated assuming no geometrical imperfections and the imperfection is because of higher void volume fraction in groove zone than that in safe zone.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-021-01619-7</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1960-6206
ispartof International journal of material forming, 2021-09, Vol.14 (5), p.1031-1041
issn 1960-6206
1960-6214
language eng
recordid cdi_proquest_journals_2561506890
source Springer Link
subjects Algorithms
Aluminum base alloys
CAE) and Design
Computational Intelligence
Computer-Aided Engineering (CAD
Defects
Engineering
Extreme values
Forming limit diagrams
Grooves
Machines
Manufacturing
Materials Science
Mechanical Engineering
Original Research
Processes
title Study of forming limit diagram (FLD) prediction of anisotropic sheet metals using Gurson model in M-K method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20forming%20limit%20diagram%20(FLD)%20prediction%20of%20anisotropic%20sheet%20metals%20using%20Gurson%20model%20in%20M-K%20method&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Shahzamanian,%20M.%20M.&rft.date=2021-09-01&rft.volume=14&rft.issue=5&rft.spage=1031&rft.epage=1041&rft.pages=1031-1041&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-021-01619-7&rft_dat=%3Cproquest_cross%3E2561506890%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-53601c5ef683c0ade6b5f6cb6bc6449ecb1b98b07ce501e0c0534b1dafeafc6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561506890&rft_id=info:pmid/&rfr_iscdi=true