Loading…
On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential
We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The...
Saved in:
Published in: | arXiv.org 2021-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Betsch, Steffen Last, Günter |
description | We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations. |
doi_str_mv | 10.48550/arxiv.2108.06303 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2561644589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2561644589</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-bc4941e40ac8c61f7e7d9b5234670ef9016f3e46ae45ab71bf51568113c976e83</originalsourceid><addsrcrecordid>eNotj0tLAzEYAIMgWGp_gLeA5615P45StAqFXnrzUJLsF5uyJOsmW_35FvQ0txkGoQdK1sJISZ7c9JMua0aJWRPFCb9BC8Y57Yxg7A6taj0TQpjSTEq-QB_7jNsJ8JzT1wwZasUl4m3yvuI-1TYlP7dUcsXfqZ2ww7nkLsOna-kC2OUe19mHKbUU3IBHlyY8lga5JTfco9vohgqrfy7R4fXlsHnrdvvt--Z51zkreeeDsIKCIC6YoGjUoHvrJeNCaQLREqoiB6EcCOm8pj5KKpWhlAerFRi-RI9_2nEq14fajucyT_laPDKpqBJCGst_AVpqVLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561644589</pqid></control><display><type>article</type><title>On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential</title><source>Publicly Available Content (ProQuest)</source><creator>Betsch, Steffen ; Last, Günter</creator><creatorcontrib>Betsch, Steffen ; Last, Günter</creatorcontrib><description>We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2108.06303</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coupling ; Uniqueness</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2561644589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Betsch, Steffen</creatorcontrib><creatorcontrib>Last, Günter</creatorcontrib><title>On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential</title><title>arXiv.org</title><description>We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations.</description><subject>Coupling</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0tLAzEYAIMgWGp_gLeA5615P45StAqFXnrzUJLsF5uyJOsmW_35FvQ0txkGoQdK1sJISZ7c9JMua0aJWRPFCb9BC8Y57Yxg7A6taj0TQpjSTEq-QB_7jNsJ8JzT1wwZasUl4m3yvuI-1TYlP7dUcsXfqZ2ww7nkLsOna-kC2OUe19mHKbUU3IBHlyY8lga5JTfco9vohgqrfy7R4fXlsHnrdvvt--Z51zkreeeDsIKCIC6YoGjUoHvrJeNCaQLREqoiB6EcCOm8pj5KKpWhlAerFRi-RI9_2nEq14fajucyT_laPDKpqBJCGst_AVpqVLA</recordid><startdate>20210813</startdate><enddate>20210813</enddate><creator>Betsch, Steffen</creator><creator>Last, Günter</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210813</creationdate><title>On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential</title><author>Betsch, Steffen ; Last, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-bc4941e40ac8c61f7e7d9b5234670ef9016f3e46ae45ab71bf51568113c976e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coupling</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Betsch, Steffen</creatorcontrib><creatorcontrib>Last, Günter</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betsch, Steffen</au><au>Last, Günter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential</atitle><jtitle>arXiv.org</jtitle><date>2021-08-13</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We prove that the distribution of a Gibbs process with non-negative pair potential is uniquely determined as soon as an associated Poisson-driven random connection model (RCM) does not percolate. Our proof combines disagreement coupling in continuum with a coupling of a Gibbs process and a RCM. The improvement over previous uniqueness results is illustrated both in theory and simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2108.06303</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2561644589 |
source | Publicly Available Content (ProQuest) |
subjects | Coupling Uniqueness |
title | On the uniqueness of Gibbs distributions with a non-negative and subcritical pair potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20uniqueness%20of%20Gibbs%20distributions%20with%20a%20non-negative%20and%20subcritical%20pair%20potential&rft.jtitle=arXiv.org&rft.au=Betsch,%20Steffen&rft.date=2021-08-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2108.06303&rft_dat=%3Cproquest%3E2561644589%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-bc4941e40ac8c61f7e7d9b5234670ef9016f3e46ae45ab71bf51568113c976e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561644589&rft_id=info:pmid/&rfr_iscdi=true |