Loading…

Rapid synthesis of gold–palladium core–shell aerogels for selective and robust electrochemical CO2 reduction

Noble metal aerogels (NMAs), one class of the youngest members in the aerogel family, have drawn increasing attention in the last decade. Featuring the high catalytic activity of noble metals and a 3D self-supported porous network of the aerogels, they have displayed profound potential for electroca...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-08, Vol.9 (32), p.17189-17197
Main Authors: Du, Ran, Jin, Wei, Wu, Hengbo, Hübner, René, Zhou, Lin, Geng Xue, Hu, Yue, Eychmüller, Alexander
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Noble metal aerogels (NMAs), one class of the youngest members in the aerogel family, have drawn increasing attention in the last decade. Featuring the high catalytic activity of noble metals and a 3D self-supported porous network of the aerogels, they have displayed profound potential for electrocatalysis. However, considerable challenges reside in the rapid fabrication of NMAs with a well-tailored architecture, constraining the manipulation of their electrochemical properties for optimized performance. Here, a disturbance-assisted dynamic shelling strategy is developed, generating self-supported Au–Pd core–shell gels within 10 min. Based on suitable activation and desorption energies of the involved species as suggested by theoretical calculations, the Au–Pd core–shell aerogel manifests outstanding CO selectivity and stability at low overpotential (faradaic efficiency > 98% at −0.5 V vs. RHE over 12 hours) for the electrochemical CO2 reduction reaction (CO2RR). The present strategy offers a new perspective to facilely design architecture-specified high-performance electrocatalysts for the CO2RR.
ISSN:2050-7488
2050-7496
DOI:10.1039/d1ta03103a