Loading…
RETRACTED ARTICLE: Efficient hybrid algorithm based on genetic with weighted fuzzy rule for developing a decision support system in prediction of heart diseases
In this article, the clinical decision support system is discussed under the weighted fuzzy rule approach and genetic algorithm for computer-aided heart disease determination. The problem of feature selection is solved by the answers formulated from the stochastic inquiry from the genetic algorithm....
Saved in:
Published in: | The Journal of supercomputing 2021, Vol.77 (9), p.10117-10137 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, the clinical decision support system is discussed under the weighted fuzzy rule approach and genetic algorithm for computer-aided heart disease determination. The problem of feature selection is solved by the answers formulated from the stochastic inquiry from the genetic algorithm. In this, the weighed fuzzy framework is built by the application of certain major highlights selected from the datasets. In this, the proposed framework adopted favorable positions by the fuzzy rule strategy and the leaning of the fuzzy approach is being successful by the application of offered weighed methodology activity. At last, the risk forecasting outcomes from the experimentation on UCI machine learning source and supercomputing techniques are assured in our proposed clinical decision support system is enhanced essentially when contrasted with other frameworks in terms of sensitivity specificity, sensitivity, and accuracy. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-021-03677-9 |