Loading…
Development of Geopolymer Ceramic as a Potential Reinforcing Material in Solder Alloy: Short review
Nowadays, the consumption of lead-free solder has been widely used around the world since the utilization of SnPb solder has been banned and restricted by European Union. Variety of studies have been conducted by the researchers to find an alternative to replace the usage of SnPb such as SnCu, SAC,...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2020-02, Vol.743 (1), p.12023 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nowadays, the consumption of lead-free solder has been widely used around the world since the utilization of SnPb solder has been banned and restricted by European Union. Variety of studies have been conducted by the researchers to find an alternative to replace the usage of SnPb such as SnCu, SAC, SnAg and etc. However, the development of plain lead-free solder was declared to provide low mechanical, thermal, and electrical properties in terms of interfacial intermetallic compound and wettability towards its solder joint compare to the traditionally monolithic SnPb solder alloy. Mostly, previous studies stated that addition of some additives such as ceramic particles (Si3N4, TiO2, SiC, NiO and etc) may improves the solder joint reliability. At the same time, no major studies were done using geopolymer ceramic as reinforcing agent in plain matrix alloy. Therefore, this paper reviews the fabrication process of multiple geopolymer-based ceramic such as fly ash, kaolin, and slag as reinforcement in solder alloy. The development process includes the processing method of geopolymer ceramic and the characterization of geopolymer ceramic as reinforcing material consist of; i) chemical composition, and ii) phase identification. |
---|---|
ISSN: | 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/743/1/012023 |