Loading…

Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity

Context Evaluation of land cover change (LCC) is commonly done at the pixel level; however, the model’s purpose may be relevant at a different grain size. Thus, the same model may be good for one purpose but inappropriate for another. For conservation applications, it is crucial to assess land chang...

Full description

Saved in:
Bibliographic Details
Published in:Landscape ecology 2021-09, Vol.36 (9), p.2707-2723
Main Authors: Sangermano, Florencia, Pontius, Robert Gilmore, Chaitman, Jamieson, Meneghini, Aaron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f5ae073372bbb9dff3ad85fd4ff04c53b30bd7c765f3768297d70cc05d14b3dc3
cites cdi_FETCH-LOGICAL-c319t-f5ae073372bbb9dff3ad85fd4ff04c53b30bd7c765f3768297d70cc05d14b3dc3
container_end_page 2723
container_issue 9
container_start_page 2707
container_title Landscape ecology
container_volume 36
creator Sangermano, Florencia
Pontius, Robert Gilmore
Chaitman, Jamieson
Meneghini, Aaron
description Context Evaluation of land cover change (LCC) is commonly done at the pixel level; however, the model’s purpose may be relevant at a different grain size. Thus, the same model may be good for one purpose but inappropriate for another. For conservation applications, it is crucial to assess land change simulations at the grain relevant for the assessment of biodiversity impacts. Objectives Our objective is to evaluate land cover change scenarios in Bolivia, at the pixel-level and grain relevant to biodiversity, to inform LCC models for biodiversity assessments. Methods We created six deforestation simulations that varied deforestation allocation based on forest management units (national, province, and municipality), ecoregions, and carbon stocks. We evaluated the simulations at the pixel level, and the objective’s relevant grain size through stratified error decomposition. We assessed biodiversity impacts by comparing the quantity of reference and simulated deforestation within species ranges. Results The spatial allocation of deforestation differed across simulations; however, their pixel-level error were similar. The province and municipality land change simulations had the lowest allocation errors at the relevant grain despite their large pixel-level errors, and they showed the lowest biodiversity errors. The province simulation provided the best balance identifying both affected species composition and the area of impact. Conclusions This work presents evidence of the importance of incorporating information regarding the purpose of the simulation during model evaluation and selection. Error decomposition allowed ignoring irrelevant errors, translating into meaningful assessments of biodiversity impacts. As opposed to pixel-level metrics, stratified errors identified models that characterized biodiversity impacts best.
doi_str_mv 10.1007/s10980-021-01251-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562073923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562073923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f5ae073372bbb9dff3ad85fd4ff04c53b30bd7c765f3768297d70cc05d14b3dc3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9ehN0kw6Sym-oOBG1yHPdurMpCZpxX9vdCruXF2495zvcg5ClwSuCYC4SQSaOVRASQWEclLxIzQhXNCqETU5RhNoyok2gp2is5Q2AMAYwAR9LNvhrR1WuFODxWathpXDfbCuw26vup3KbRhwDodd0Btncrt32IeI89phlZJLqXdDxsEfKGHv4i-r7bfK5IQLRbfBFmtMbf48RydedcldHOYUvd7fvSweq-Xzw9PidlkZRppcea4cCMYE1Vo31num7Jx7O_MeZoYzzUBbYUTNPRP1vAS0AowBbslMM2vYFF2N3G0M7zuXstyEXRzKS0l5TQu7oayo6KgyMaQUnZfb2PYqfkoC8rtgORYsS8Hyp2DJi4mNplTEJWr8Q__j-gJzKoBM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562073923</pqid></control><display><type>article</type><title>Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity</title><source>Springer Nature</source><creator>Sangermano, Florencia ; Pontius, Robert Gilmore ; Chaitman, Jamieson ; Meneghini, Aaron</creator><creatorcontrib>Sangermano, Florencia ; Pontius, Robert Gilmore ; Chaitman, Jamieson ; Meneghini, Aaron</creatorcontrib><description>Context Evaluation of land cover change (LCC) is commonly done at the pixel level; however, the model’s purpose may be relevant at a different grain size. Thus, the same model may be good for one purpose but inappropriate for another. For conservation applications, it is crucial to assess land change simulations at the grain relevant for the assessment of biodiversity impacts. Objectives Our objective is to evaluate land cover change scenarios in Bolivia, at the pixel-level and grain relevant to biodiversity, to inform LCC models for biodiversity assessments. Methods We created six deforestation simulations that varied deforestation allocation based on forest management units (national, province, and municipality), ecoregions, and carbon stocks. We evaluated the simulations at the pixel level, and the objective’s relevant grain size through stratified error decomposition. We assessed biodiversity impacts by comparing the quantity of reference and simulated deforestation within species ranges. Results The spatial allocation of deforestation differed across simulations; however, their pixel-level error were similar. The province and municipality land change simulations had the lowest allocation errors at the relevant grain despite their large pixel-level errors, and they showed the lowest biodiversity errors. The province simulation provided the best balance identifying both affected species composition and the area of impact. Conclusions This work presents evidence of the importance of incorporating information regarding the purpose of the simulation during model evaluation and selection. Error decomposition allowed ignoring irrelevant errors, translating into meaningful assessments of biodiversity impacts. As opposed to pixel-level metrics, stratified errors identified models that characterized biodiversity impacts best.</description><identifier>ISSN: 0921-2973</identifier><identifier>EISSN: 1572-9761</identifier><identifier>DOI: 10.1007/s10980-021-01251-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Assessments ; Biodiversity ; Biomedical and Life Sciences ; Decomposition ; Deforestation ; Ecology ; Environmental Management ; Evaluation ; Forest management ; Grain size ; Land cover ; Landscape Ecology ; Landscape/Regional and Urban Planning ; Life Sciences ; Nature Conservation ; Particle size ; Pixels ; Research Article ; Simulation ; Species composition ; Sustainable Development</subject><ispartof>Landscape ecology, 2021-09, Vol.36 (9), p.2707-2723</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f5ae073372bbb9dff3ad85fd4ff04c53b30bd7c765f3768297d70cc05d14b3dc3</citedby><cites>FETCH-LOGICAL-c319t-f5ae073372bbb9dff3ad85fd4ff04c53b30bd7c765f3768297d70cc05d14b3dc3</cites><orcidid>0000-0002-0539-8930 ; 0000-0001-5442-3197 ; 0000-0003-4437-4293 ; 0000-0001-7287-5875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sangermano, Florencia</creatorcontrib><creatorcontrib>Pontius, Robert Gilmore</creatorcontrib><creatorcontrib>Chaitman, Jamieson</creatorcontrib><creatorcontrib>Meneghini, Aaron</creatorcontrib><title>Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity</title><title>Landscape ecology</title><addtitle>Landscape Ecol</addtitle><description>Context Evaluation of land cover change (LCC) is commonly done at the pixel level; however, the model’s purpose may be relevant at a different grain size. Thus, the same model may be good for one purpose but inappropriate for another. For conservation applications, it is crucial to assess land change simulations at the grain relevant for the assessment of biodiversity impacts. Objectives Our objective is to evaluate land cover change scenarios in Bolivia, at the pixel-level and grain relevant to biodiversity, to inform LCC models for biodiversity assessments. Methods We created six deforestation simulations that varied deforestation allocation based on forest management units (national, province, and municipality), ecoregions, and carbon stocks. We evaluated the simulations at the pixel level, and the objective’s relevant grain size through stratified error decomposition. We assessed biodiversity impacts by comparing the quantity of reference and simulated deforestation within species ranges. Results The spatial allocation of deforestation differed across simulations; however, their pixel-level error were similar. The province and municipality land change simulations had the lowest allocation errors at the relevant grain despite their large pixel-level errors, and they showed the lowest biodiversity errors. The province simulation provided the best balance identifying both affected species composition and the area of impact. Conclusions This work presents evidence of the importance of incorporating information regarding the purpose of the simulation during model evaluation and selection. Error decomposition allowed ignoring irrelevant errors, translating into meaningful assessments of biodiversity impacts. As opposed to pixel-level metrics, stratified errors identified models that characterized biodiversity impacts best.</description><subject>Assessments</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Decomposition</subject><subject>Deforestation</subject><subject>Ecology</subject><subject>Environmental Management</subject><subject>Evaluation</subject><subject>Forest management</subject><subject>Grain size</subject><subject>Land cover</subject><subject>Landscape Ecology</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Life Sciences</subject><subject>Nature Conservation</subject><subject>Particle size</subject><subject>Pixels</subject><subject>Research Article</subject><subject>Simulation</subject><subject>Species composition</subject><subject>Sustainable Development</subject><issn>0921-2973</issn><issn>1572-9761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9ehN0kw6Sym-oOBG1yHPdurMpCZpxX9vdCruXF2495zvcg5ClwSuCYC4SQSaOVRASQWEclLxIzQhXNCqETU5RhNoyok2gp2is5Q2AMAYwAR9LNvhrR1WuFODxWathpXDfbCuw26vup3KbRhwDodd0Btncrt32IeI89phlZJLqXdDxsEfKGHv4i-r7bfK5IQLRbfBFmtMbf48RydedcldHOYUvd7fvSweq-Xzw9PidlkZRppcea4cCMYE1Vo31num7Jx7O_MeZoYzzUBbYUTNPRP1vAS0AowBbslMM2vYFF2N3G0M7zuXstyEXRzKS0l5TQu7oayo6KgyMaQUnZfb2PYqfkoC8rtgORYsS8Hyp2DJi4mNplTEJWr8Q__j-gJzKoBM</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sangermano, Florencia</creator><creator>Pontius, Robert Gilmore</creator><creator>Chaitman, Jamieson</creator><creator>Meneghini, Aaron</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0539-8930</orcidid><orcidid>https://orcid.org/0000-0001-5442-3197</orcidid><orcidid>https://orcid.org/0000-0003-4437-4293</orcidid><orcidid>https://orcid.org/0000-0001-7287-5875</orcidid></search><sort><creationdate>20210901</creationdate><title>Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity</title><author>Sangermano, Florencia ; Pontius, Robert Gilmore ; Chaitman, Jamieson ; Meneghini, Aaron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f5ae073372bbb9dff3ad85fd4ff04c53b30bd7c765f3768297d70cc05d14b3dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assessments</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Decomposition</topic><topic>Deforestation</topic><topic>Ecology</topic><topic>Environmental Management</topic><topic>Evaluation</topic><topic>Forest management</topic><topic>Grain size</topic><topic>Land cover</topic><topic>Landscape Ecology</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Life Sciences</topic><topic>Nature Conservation</topic><topic>Particle size</topic><topic>Pixels</topic><topic>Research Article</topic><topic>Simulation</topic><topic>Species composition</topic><topic>Sustainable Development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangermano, Florencia</creatorcontrib><creatorcontrib>Pontius, Robert Gilmore</creatorcontrib><creatorcontrib>Chaitman, Jamieson</creatorcontrib><creatorcontrib>Meneghini, Aaron</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Landscape ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangermano, Florencia</au><au>Pontius, Robert Gilmore</au><au>Chaitman, Jamieson</au><au>Meneghini, Aaron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity</atitle><jtitle>Landscape ecology</jtitle><stitle>Landscape Ecol</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>36</volume><issue>9</issue><spage>2707</spage><epage>2723</epage><pages>2707-2723</pages><issn>0921-2973</issn><eissn>1572-9761</eissn><abstract>Context Evaluation of land cover change (LCC) is commonly done at the pixel level; however, the model’s purpose may be relevant at a different grain size. Thus, the same model may be good for one purpose but inappropriate for another. For conservation applications, it is crucial to assess land change simulations at the grain relevant for the assessment of biodiversity impacts. Objectives Our objective is to evaluate land cover change scenarios in Bolivia, at the pixel-level and grain relevant to biodiversity, to inform LCC models for biodiversity assessments. Methods We created six deforestation simulations that varied deforestation allocation based on forest management units (national, province, and municipality), ecoregions, and carbon stocks. We evaluated the simulations at the pixel level, and the objective’s relevant grain size through stratified error decomposition. We assessed biodiversity impacts by comparing the quantity of reference and simulated deforestation within species ranges. Results The spatial allocation of deforestation differed across simulations; however, their pixel-level error were similar. The province and municipality land change simulations had the lowest allocation errors at the relevant grain despite their large pixel-level errors, and they showed the lowest biodiversity errors. The province simulation provided the best balance identifying both affected species composition and the area of impact. Conclusions This work presents evidence of the importance of incorporating information regarding the purpose of the simulation during model evaluation and selection. Error decomposition allowed ignoring irrelevant errors, translating into meaningful assessments of biodiversity impacts. As opposed to pixel-level metrics, stratified errors identified models that characterized biodiversity impacts best.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10980-021-01251-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0539-8930</orcidid><orcidid>https://orcid.org/0000-0001-5442-3197</orcidid><orcidid>https://orcid.org/0000-0003-4437-4293</orcidid><orcidid>https://orcid.org/0000-0001-7287-5875</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-2973
ispartof Landscape ecology, 2021-09, Vol.36 (9), p.2707-2723
issn 0921-2973
1572-9761
language eng
recordid cdi_proquest_journals_2562073923
source Springer Nature
subjects Assessments
Biodiversity
Biomedical and Life Sciences
Decomposition
Deforestation
Ecology
Environmental Management
Evaluation
Forest management
Grain size
Land cover
Landscape Ecology
Landscape/Regional and Urban Planning
Life Sciences
Nature Conservation
Particle size
Pixels
Research Article
Simulation
Species composition
Sustainable Development
title Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20land%20change%20model%20evaluation%20to%20model%20objective%20for%20the%20assessment%20of%20land%20cover%20change%20impacts%20on%20biodiversity&rft.jtitle=Landscape%20ecology&rft.au=Sangermano,%20Florencia&rft.date=2021-09-01&rft.volume=36&rft.issue=9&rft.spage=2707&rft.epage=2723&rft.pages=2707-2723&rft.issn=0921-2973&rft.eissn=1572-9761&rft_id=info:doi/10.1007/s10980-021-01251-5&rft_dat=%3Cproquest_cross%3E2562073923%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f5ae073372bbb9dff3ad85fd4ff04c53b30bd7c765f3768297d70cc05d14b3dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562073923&rft_id=info:pmid/&rfr_iscdi=true