Loading…
Convolution finite element method: an alternative approach for time integration and time-marching algorithms
A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional...
Saved in:
Published in: | Computational mechanics 2021-09, Vol.68 (3), p.667-696 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3 |
container_end_page | 696 |
container_issue | 3 |
container_start_page | 667 |
container_title | Computational mechanics |
container_volume | 68 |
creator | Amiri-Hezaveh, A. Masud, A. Ostoja-Starzewski, M. |
description | A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media. |
doi_str_mv | 10.1007/s00466-021-02046-w |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2562074548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672457079</galeid><sourcerecordid>A672457079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK7-AU8BTx56raS7k25vy-DqwoLgxznUZCo9WbqTMcns6r83TguyFw8hoXielyIvY68FXAoA_S4DdEo1IEU99dk8PGEb0bWygVF2T9kGhB4arXT_nL3I-Q5A9EPbb9i8jeE-zqfiY-DOB1-I00wLhcIXKoe4f88xcJwLpYDF3xPH4zFFtAfuYuLFL8R9KDQlPGdg2J-HzYLJHnyYqjvF5MthyS_ZM4dzpld_7wv2_frDt-2n5vbzx5vt1W1j21GWpnM4AkhrSVo3Ckl6HKBXckQYSFsrRucsWrtTRH3rWrfDQVnSu14pIOXaC_Zmza2L_jhRLuYunur6czay5oDu-m6o1OVKTTiT8cHFkrDm4p4Wb2Mg5-v8SmnZ9Rr0WIW3j4TKFPpZJjzlbG6-fnnMypW1KeacyJlj8vVLfhkB5k9lZq3M1MrMuTLzUKV2lXKFw0Tp397_sX4Dzm2bsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562074548</pqid></control><display><type>article</type><title>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</title><source>Springer Nature</source><creator>Amiri-Hezaveh, A. ; Masud, A. ; Ostoja-Starzewski, M.</creator><creatorcontrib>Amiri-Hezaveh, A. ; Masud, A. ; Ostoja-Starzewski, M.</creatorcontrib><description>A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-021-02046-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Classical and Continuum Physics ; Computational Science and Engineering ; Convolution ; Differential equations ; Elastic media ; Elastodynamics ; Engineering ; Equations of motion ; Finite element method ; Mass-spring-damper systems ; Mathematical analysis ; Methods ; Original Paper ; Partial differential equations ; Shape functions ; Theoretical and Applied Mechanics ; Time integration ; Variational principles ; Wave propagation ; Waves</subject><ispartof>Computational mechanics, 2021-09, Vol.68 (3), p.667-696</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</citedby><cites>FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amiri-Hezaveh, A.</creatorcontrib><creatorcontrib>Masud, A.</creatorcontrib><creatorcontrib>Ostoja-Starzewski, M.</creatorcontrib><title>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Convolution</subject><subject>Differential equations</subject><subject>Elastic media</subject><subject>Elastodynamics</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Finite element method</subject><subject>Mass-spring-damper systems</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Shape functions</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time integration</subject><subject>Variational principles</subject><subject>Wave propagation</subject><subject>Waves</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOK7-AU8BTx56raS7k25vy-DqwoLgxznUZCo9WbqTMcns6r83TguyFw8hoXielyIvY68FXAoA_S4DdEo1IEU99dk8PGEb0bWygVF2T9kGhB4arXT_nL3I-Q5A9EPbb9i8jeE-zqfiY-DOB1-I00wLhcIXKoe4f88xcJwLpYDF3xPH4zFFtAfuYuLFL8R9KDQlPGdg2J-HzYLJHnyYqjvF5MthyS_ZM4dzpld_7wv2_frDt-2n5vbzx5vt1W1j21GWpnM4AkhrSVo3Ckl6HKBXckQYSFsrRucsWrtTRH3rWrfDQVnSu14pIOXaC_Zmza2L_jhRLuYunur6czay5oDu-m6o1OVKTTiT8cHFkrDm4p4Wb2Mg5-v8SmnZ9Rr0WIW3j4TKFPpZJjzlbG6-fnnMypW1KeacyJlj8vVLfhkB5k9lZq3M1MrMuTLzUKV2lXKFw0Tp397_sX4Dzm2bsg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Amiri-Hezaveh, A.</creator><creator>Masud, A.</creator><creator>Ostoja-Starzewski, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210901</creationdate><title>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</title><author>Amiri-Hezaveh, A. ; Masud, A. ; Ostoja-Starzewski, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Convolution</topic><topic>Differential equations</topic><topic>Elastic media</topic><topic>Elastodynamics</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Finite element method</topic><topic>Mass-spring-damper systems</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Shape functions</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time integration</topic><topic>Variational principles</topic><topic>Wave propagation</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri-Hezaveh, A.</creatorcontrib><creatorcontrib>Masud, A.</creatorcontrib><creatorcontrib>Ostoja-Starzewski, M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri-Hezaveh, A.</au><au>Masud, A.</au><au>Ostoja-Starzewski, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>3</issue><spage>667</spage><epage>696</epage><pages>667-696</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-021-02046-w</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2021-09, Vol.68 (3), p.667-696 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_proquest_journals_2562074548 |
source | Springer Nature |
subjects | Algorithms Analysis Classical and Continuum Physics Computational Science and Engineering Convolution Differential equations Elastic media Elastodynamics Engineering Equations of motion Finite element method Mass-spring-damper systems Mathematical analysis Methods Original Paper Partial differential equations Shape functions Theoretical and Applied Mechanics Time integration Variational principles Wave propagation Waves |
title | Convolution finite element method: an alternative approach for time integration and time-marching algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20finite%20element%20method:%20an%20alternative%20approach%20for%20time%20integration%20and%20time-marching%20algorithms&rft.jtitle=Computational%20mechanics&rft.au=Amiri-Hezaveh,%20A.&rft.date=2021-09-01&rft.volume=68&rft.issue=3&rft.spage=667&rft.epage=696&rft.pages=667-696&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-021-02046-w&rft_dat=%3Cgale_proqu%3EA672457079%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562074548&rft_id=info:pmid/&rft_galeid=A672457079&rfr_iscdi=true |