Loading…

Convolution finite element method: an alternative approach for time integration and time-marching algorithms

A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional...

Full description

Saved in:
Bibliographic Details
Published in:Computational mechanics 2021-09, Vol.68 (3), p.667-696
Main Authors: Amiri-Hezaveh, A., Masud, A., Ostoja-Starzewski, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3
cites cdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3
container_end_page 696
container_issue 3
container_start_page 667
container_title Computational mechanics
container_volume 68
creator Amiri-Hezaveh, A.
Masud, A.
Ostoja-Starzewski, M.
description A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media.
doi_str_mv 10.1007/s00466-021-02046-w
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2562074548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672457079</galeid><sourcerecordid>A672457079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</originalsourceid><addsrcrecordid>eNp9kU2LFDEQhoMoOK7-AU8BTx56raS7k25vy-DqwoLgxznUZCo9WbqTMcns6r83TguyFw8hoXielyIvY68FXAoA_S4DdEo1IEU99dk8PGEb0bWygVF2T9kGhB4arXT_nL3I-Q5A9EPbb9i8jeE-zqfiY-DOB1-I00wLhcIXKoe4f88xcJwLpYDF3xPH4zFFtAfuYuLFL8R9KDQlPGdg2J-HzYLJHnyYqjvF5MthyS_ZM4dzpld_7wv2_frDt-2n5vbzx5vt1W1j21GWpnM4AkhrSVo3Ckl6HKBXckQYSFsrRucsWrtTRH3rWrfDQVnSu14pIOXaC_Zmza2L_jhRLuYunur6czay5oDu-m6o1OVKTTiT8cHFkrDm4p4Wb2Mg5-v8SmnZ9Rr0WIW3j4TKFPpZJjzlbG6-fnnMypW1KeacyJlj8vVLfhkB5k9lZq3M1MrMuTLzUKV2lXKFw0Tp397_sX4Dzm2bsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562074548</pqid></control><display><type>article</type><title>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</title><source>Springer Nature</source><creator>Amiri-Hezaveh, A. ; Masud, A. ; Ostoja-Starzewski, M.</creator><creatorcontrib>Amiri-Hezaveh, A. ; Masud, A. ; Ostoja-Starzewski, M.</creatorcontrib><description>A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-021-02046-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Analysis ; Classical and Continuum Physics ; Computational Science and Engineering ; Convolution ; Differential equations ; Elastic media ; Elastodynamics ; Engineering ; Equations of motion ; Finite element method ; Mass-spring-damper systems ; Mathematical analysis ; Methods ; Original Paper ; Partial differential equations ; Shape functions ; Theoretical and Applied Mechanics ; Time integration ; Variational principles ; Wave propagation ; Waves</subject><ispartof>Computational mechanics, 2021-09, Vol.68 (3), p.667-696</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</citedby><cites>FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Amiri-Hezaveh, A.</creatorcontrib><creatorcontrib>Masud, A.</creatorcontrib><creatorcontrib>Ostoja-Starzewski, M.</creatorcontrib><title>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Convolution</subject><subject>Differential equations</subject><subject>Elastic media</subject><subject>Elastodynamics</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Finite element method</subject><subject>Mass-spring-damper systems</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Original Paper</subject><subject>Partial differential equations</subject><subject>Shape functions</subject><subject>Theoretical and Applied Mechanics</subject><subject>Time integration</subject><subject>Variational principles</subject><subject>Wave propagation</subject><subject>Waves</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU2LFDEQhoMoOK7-AU8BTx56raS7k25vy-DqwoLgxznUZCo9WbqTMcns6r83TguyFw8hoXielyIvY68FXAoA_S4DdEo1IEU99dk8PGEb0bWygVF2T9kGhB4arXT_nL3I-Q5A9EPbb9i8jeE-zqfiY-DOB1-I00wLhcIXKoe4f88xcJwLpYDF3xPH4zFFtAfuYuLFL8R9KDQlPGdg2J-HzYLJHnyYqjvF5MthyS_ZM4dzpld_7wv2_frDt-2n5vbzx5vt1W1j21GWpnM4AkhrSVo3Ckl6HKBXckQYSFsrRucsWrtTRH3rWrfDQVnSu14pIOXaC_Zmza2L_jhRLuYunur6czay5oDu-m6o1OVKTTiT8cHFkrDm4p4Wb2Mg5-v8SmnZ9Rr0WIW3j4TKFPpZJjzlbG6-fnnMypW1KeacyJlj8vVLfhkB5k9lZq3M1MrMuTLzUKV2lXKFw0Tp397_sX4Dzm2bsg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Amiri-Hezaveh, A.</creator><creator>Masud, A.</creator><creator>Ostoja-Starzewski, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210901</creationdate><title>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</title><author>Amiri-Hezaveh, A. ; Masud, A. ; Ostoja-Starzewski, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Convolution</topic><topic>Differential equations</topic><topic>Elastic media</topic><topic>Elastodynamics</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Finite element method</topic><topic>Mass-spring-damper systems</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Original Paper</topic><topic>Partial differential equations</topic><topic>Shape functions</topic><topic>Theoretical and Applied Mechanics</topic><topic>Time integration</topic><topic>Variational principles</topic><topic>Wave propagation</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri-Hezaveh, A.</creatorcontrib><creatorcontrib>Masud, A.</creatorcontrib><creatorcontrib>Ostoja-Starzewski, M.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri-Hezaveh, A.</au><au>Masud, A.</au><au>Ostoja-Starzewski, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolution finite element method: an alternative approach for time integration and time-marching algorithms</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>68</volume><issue>3</issue><spage>667</spage><epage>696</epage><pages>667-696</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>A finite element procedure is proposed for wave propagation in elastic media. The method is based on an alternative formulation for the equations of motion that can systematically be constructed for linear evolutionary partial differential equations. A weak formulation—corresponding to convolutional variational principles—is then defined, which paves the way for introducing a particular type of time-wise shape functions. Next, some mathematical characteristics of the method are investigated, and upon those properties, a new solution procedure for elastodynamics problems is proposed. Subsequently, several numerical examples are considered, including a single degree of freedom mass-spring-damper system as the prototype of structural dynamics along with 1d and 2d elastodynamics problems for the case of the wave motion in elastic solids. The present method can be considered as an alternative approach for time integration and time-marching algorithms, e.g., Newmark’s algorithm, to solve time-domain problems in elastic media.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-021-02046-w</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2021-09, Vol.68 (3), p.667-696
issn 0178-7675
1432-0924
language eng
recordid cdi_proquest_journals_2562074548
source Springer Nature
subjects Algorithms
Analysis
Classical and Continuum Physics
Computational Science and Engineering
Convolution
Differential equations
Elastic media
Elastodynamics
Engineering
Equations of motion
Finite element method
Mass-spring-damper systems
Mathematical analysis
Methods
Original Paper
Partial differential equations
Shape functions
Theoretical and Applied Mechanics
Time integration
Variational principles
Wave propagation
Waves
title Convolution finite element method: an alternative approach for time integration and time-marching algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolution%20finite%20element%20method:%20an%20alternative%20approach%20for%20time%20integration%20and%20time-marching%20algorithms&rft.jtitle=Computational%20mechanics&rft.au=Amiri-Hezaveh,%20A.&rft.date=2021-09-01&rft.volume=68&rft.issue=3&rft.spage=667&rft.epage=696&rft.pages=667-696&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-021-02046-w&rft_dat=%3Cgale_proqu%3EA672457079%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-4fa9002cce2cf912e79805629a08e7cc19ffcaccb6ee53f3fba86ce7b5660e6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562074548&rft_id=info:pmid/&rft_galeid=A672457079&rfr_iscdi=true