Loading…

Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation

Recently, photovoltaic (PV) energy has been considered one of the most exciting new technologies in the energy sector. PV power plants receive considerable attention because of their wide applications. Consequently, it is important to study the parameters of the solar cell model to control and deter...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2021-04, Vol.13 (7), p.3863
Main Authors: Abdelghany, Reem Y., Kamel, Salah, Sultan, Hamdy M., Khorasy, Ahmed, Elsayed, Salah K., Ahmed, Mahrous
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, photovoltaic (PV) energy has been considered one of the most exciting new technologies in the energy sector. PV power plants receive considerable attention because of their wide applications. Consequently, it is important to study the parameters of the solar cell model to control and determine the characteristics of the PV systems. In this study, an improved bonobo optimizer (IBO) was proposed to improve the performance of the conventional bonobo optimizer (BO). Both the IBO and the BO were utilized to obtain the accurate values of the unknown parameters of different mathematical models of solar cells. The proposed IBO improved the performance of the conventional BO by enhancing the exploitation (local search) and exploration (global search) phases to find the best optimal solution, where the search space was reduced using Levy flights and the sine–cosine function. Levy flights enhance the explorative phase, whereas the sine–cosine function improves the exploitation phase. Both the proposed IBO and the conventional BO were applied on single, double, and triple diode models of solar cells. To check the effectiveness of the proposed algorithm, statistical analysis based on the results of 20 runs of the optimization program was performed. The results obtained by the proposed IBO were compared with other algorithms, and all results of the proposed algorithm showed their durability and exceeded other algorithms.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13073863