Loading…

Transmission Path Tracking of Maritime COVID-19 Pandemic via Ship Sailing Pattern Mining

Since the spread of the coronavirus disease 2019 (COVID-19) pandemic, the transportation of cargo by ship has been seriously impacted. In order to prevent and control maritime COVID-19 transmission, it is of great significance to track and predict ship sailing behavior. As the nodes of cargo ship tr...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2021-02, Vol.13 (3), p.1089
Main Authors: Zheng, Hailin, Hu, Qinyou, Yang, Chun, Chen, Jinhai, Mei, Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the spread of the coronavirus disease 2019 (COVID-19) pandemic, the transportation of cargo by ship has been seriously impacted. In order to prevent and control maritime COVID-19 transmission, it is of great significance to track and predict ship sailing behavior. As the nodes of cargo ship transportation networks, ports of call can reflect the sailing behavior of the cargo ship. Accurate hierarchical division of ports of call can help to clarify the navigation law of ships with different ship types and scales. For typical cargo ships, ships with deadweight over 10,000 tonnages account for 95.77% of total deadweight, and 592,244 berthing ships’ records were mined from automatic identification system (AIS) from January to October 2020. Considering ship type and ship scale, port hierarchy classification models are constructed to divide these ports into three kinds of specialized ports, including bulk, container, and tanker ports. For all types of specialized ports (considering ship scale), port call probability for corresponding ship type is higher than other ships, positively correlated with the ship deadweight if port scale is bigger than ship scale, and negatively correlated with the ship deadweight if port scale is smaller than ship scale. Moreover, port call probability for its corresponding ship type is positively correlated with ship deadweight, while port call probability for other ship types is negatively correlated with ship deadweight. Results indicate that a specialized port hierarchical clustering algorithm can divide the hierarchical structure of typical cargo ship calling ports, and is an effective method to track the maritime transmission path of the COVID-19 pandemic.
ISSN:2071-1050
2071-1050
DOI:10.3390/su13031089