Loading…

Linear Dynamical Systems of Nilpotent Lie Groups

We study the topology of orbits of dynamical systems defined by finite-dimensional representations of nilpotent Lie groups. Thus, the following dichotomy is established: either the interior of the set of regular points is dense in the representation space, or the complement of the set of regular poi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of fourier analysis and applications 2021-10, Vol.27 (5), Article 74
Main Authors: Beltita, Ingrid, Beltita, Daniel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-a992a1b8644623fae107edff717828ab0c8caba6536368a4372f099fdc8c635e3
cites cdi_FETCH-LOGICAL-c358t-a992a1b8644623fae107edff717828ab0c8caba6536368a4372f099fdc8c635e3
container_end_page
container_issue 5
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 27
creator Beltita, Ingrid
Beltita, Daniel
description We study the topology of orbits of dynamical systems defined by finite-dimensional representations of nilpotent Lie groups. Thus, the following dichotomy is established: either the interior of the set of regular points is dense in the representation space, or the complement of the set of regular points is dense, and then the interior of that complement is either empty or dense in the representation space. The regular points are by definition the points whose orbits are locally compact in their relative topology. We thus generalize some results from the recent literature on linear actions of abelian Lie groups. As an application, we determine the generalized a x + b -groups whose C ∗ -algebras are antiliminary, that is, no closed 2-sided ideal is type I.
doi_str_mv 10.1007/s00041-021-09882-7
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2562249631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718416881</galeid><sourcerecordid>A718416881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a992a1b8644623fae107edff717828ab0c8caba6536368a4372f099fdc8c635e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA66l5zOSxLFWrMOhCXYd0elNSpsmYzCz6700dwZ2ESw6X893kHoRuCV4QjMV9whhXpMQ0l5KSluIMzUjNSFnLmpxnjbnKmqtLdJXSHmcnE2yGcOM8mFg8HL05uNZ0xfsxDXBIRbDFq-v6MIAfisZBsY5h7NM1urCmS3Dze8_R59Pjx-q5bN7WL6tlU7aslkNplKKGbCSvKk6ZNUCwgK21gghJpdngVrZmY3jNOOPSVExQi5Wy29znrAY2R3fT3D6GrxHSoPdhjD4_qWnNKa0UZyS7FpNrZzrQztswRNPms4W8TfBgXe4vBZEV4VKeADoBbQwpRbC6j-5g4lETrE9R6ilKnQPSP1FqkSE2QSmb_Q7i31_-ob4BAPt0gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562249631</pqid></control><display><type>article</type><title>Linear Dynamical Systems of Nilpotent Lie Groups</title><source>Springer Nature</source><creator>Beltita, Ingrid ; Beltita, Daniel</creator><creatorcontrib>Beltita, Ingrid ; Beltita, Daniel</creatorcontrib><description>We study the topology of orbits of dynamical systems defined by finite-dimensional representations of nilpotent Lie groups. Thus, the following dichotomy is established: either the interior of the set of regular points is dense in the representation space, or the complement of the set of regular points is dense, and then the interior of that complement is either empty or dense in the representation space. The regular points are by definition the points whose orbits are locally compact in their relative topology. We thus generalize some results from the recent literature on linear actions of abelian Lie groups. As an application, we determine the generalized a x + b -groups whose C ∗ -algebras are antiliminary, that is, no closed 2-sided ideal is type I.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-021-09882-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Algebra ; Approximations and Expansions ; Dynamical systems ; Fourier Analysis ; Group theory ; Lie groups ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Orbits ; Partial Differential Equations ; Representations ; Signal,Image and Speech Processing ; Topology</subject><ispartof>The Journal of fourier analysis and applications, 2021-10, Vol.27 (5), Article 74</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a992a1b8644623fae107edff717828ab0c8caba6536368a4372f099fdc8c635e3</citedby><cites>FETCH-LOGICAL-c358t-a992a1b8644623fae107edff717828ab0c8caba6536368a4372f099fdc8c635e3</cites><orcidid>0000-0003-4912-7259 ; 0000-0003-2414-8176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beltita, Ingrid</creatorcontrib><creatorcontrib>Beltita, Daniel</creatorcontrib><title>Linear Dynamical Systems of Nilpotent Lie Groups</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We study the topology of orbits of dynamical systems defined by finite-dimensional representations of nilpotent Lie groups. Thus, the following dichotomy is established: either the interior of the set of regular points is dense in the representation space, or the complement of the set of regular points is dense, and then the interior of that complement is either empty or dense in the representation space. The regular points are by definition the points whose orbits are locally compact in their relative topology. We thus generalize some results from the recent literature on linear actions of abelian Lie groups. As an application, we determine the generalized a x + b -groups whose C ∗ -algebras are antiliminary, that is, no closed 2-sided ideal is type I.</description><subject>Abstract Harmonic Analysis</subject><subject>Algebra</subject><subject>Approximations and Expansions</subject><subject>Dynamical systems</subject><subject>Fourier Analysis</subject><subject>Group theory</subject><subject>Lie groups</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Partial Differential Equations</subject><subject>Representations</subject><subject>Signal,Image and Speech Processing</subject><subject>Topology</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA66l5zOSxLFWrMOhCXYd0elNSpsmYzCz6700dwZ2ESw6X893kHoRuCV4QjMV9whhXpMQ0l5KSluIMzUjNSFnLmpxnjbnKmqtLdJXSHmcnE2yGcOM8mFg8HL05uNZ0xfsxDXBIRbDFq-v6MIAfisZBsY5h7NM1urCmS3Dze8_R59Pjx-q5bN7WL6tlU7aslkNplKKGbCSvKk6ZNUCwgK21gghJpdngVrZmY3jNOOPSVExQi5Wy29znrAY2R3fT3D6GrxHSoPdhjD4_qWnNKa0UZyS7FpNrZzrQztswRNPms4W8TfBgXe4vBZEV4VKeADoBbQwpRbC6j-5g4lETrE9R6ilKnQPSP1FqkSE2QSmb_Q7i31_-ob4BAPt0gg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Beltita, Ingrid</creator><creator>Beltita, Daniel</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4912-7259</orcidid><orcidid>https://orcid.org/0000-0003-2414-8176</orcidid></search><sort><creationdate>20211001</creationdate><title>Linear Dynamical Systems of Nilpotent Lie Groups</title><author>Beltita, Ingrid ; Beltita, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a992a1b8644623fae107edff717828ab0c8caba6536368a4372f099fdc8c635e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Algebra</topic><topic>Approximations and Expansions</topic><topic>Dynamical systems</topic><topic>Fourier Analysis</topic><topic>Group theory</topic><topic>Lie groups</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Partial Differential Equations</topic><topic>Representations</topic><topic>Signal,Image and Speech Processing</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltita, Ingrid</creatorcontrib><creatorcontrib>Beltita, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltita, Ingrid</au><au>Beltita, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Dynamical Systems of Nilpotent Lie Groups</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>27</volume><issue>5</issue><artnum>74</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We study the topology of orbits of dynamical systems defined by finite-dimensional representations of nilpotent Lie groups. Thus, the following dichotomy is established: either the interior of the set of regular points is dense in the representation space, or the complement of the set of regular points is dense, and then the interior of that complement is either empty or dense in the representation space. The regular points are by definition the points whose orbits are locally compact in their relative topology. We thus generalize some results from the recent literature on linear actions of abelian Lie groups. As an application, we determine the generalized a x + b -groups whose C ∗ -algebras are antiliminary, that is, no closed 2-sided ideal is type I.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-021-09882-7</doi><orcidid>https://orcid.org/0000-0003-4912-7259</orcidid><orcidid>https://orcid.org/0000-0003-2414-8176</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2021-10, Vol.27 (5), Article 74
issn 1069-5869
1531-5851
language eng
recordid cdi_proquest_journals_2562249631
source Springer Nature
subjects Abstract Harmonic Analysis
Algebra
Approximations and Expansions
Dynamical systems
Fourier Analysis
Group theory
Lie groups
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Orbits
Partial Differential Equations
Representations
Signal,Image and Speech Processing
Topology
title Linear Dynamical Systems of Nilpotent Lie Groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Dynamical%20Systems%20of%20Nilpotent%20Lie%20Groups&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Beltita,%20Ingrid&rft.date=2021-10-01&rft.volume=27&rft.issue=5&rft.artnum=74&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-021-09882-7&rft_dat=%3Cgale_proqu%3EA718416881%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-a992a1b8644623fae107edff717828ab0c8caba6536368a4372f099fdc8c635e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562249631&rft_id=info:pmid/&rft_galeid=A718416881&rfr_iscdi=true