Loading…
Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets
The breakup process of a charged, leaky-dielectric jet subjected to an axial perturbation is computationally analysed from the perspectives of linear and nonlinear dynamics using the arbitrary Lagrangian–Eulerian technique. The linear dynamics of the leaky-dielectric jet is quantitatively predicted...
Saved in:
Published in: | Journal of fluid mechanics 2021-10, Vol.925, Article A4 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c302t-9601d4357c9cbae24b5b4287de824a5938d768885a81c04ef16991af054073183 |
---|---|
cites | cdi_FETCH-LOGICAL-c302t-9601d4357c9cbae24b5b4287de824a5938d768885a81c04ef16991af054073183 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 925 |
creator | Nie, Qichun Li, Fang Ma, Qianli Fang, Haisheng Yin, Zhouping |
description | The breakup process of a charged, leaky-dielectric jet subjected to an axial perturbation is computationally analysed from the perspectives of linear and nonlinear dynamics using the arbitrary Lagrangian–Eulerian technique. The linear dynamics of the leaky-dielectric jet is quantitatively predicted by the dispersion relation from the linear stability analysis. Regarding the nonlinear dynamics, it is found that the charge relaxation is responsible for the radial compression of satellite droplets, which is validated by experiments. Two types of charge relaxations, namely, ohmic conduction and surface charge convection, define the pinching process into three breakup modes, i.e. ligament pinching, end pinching and transition pinching. In the ligament-pinching mode, the ohmic conduction dominates the jet breakup since the charge relaxes to the jet ligament instantaneously. In contrast, the surface charge convection takes effect in the end-pinching mode since the surface charge is convected to the jet end via fluid flow. When the ohmic conduction is comparable to the surface charge convection, the breakup occurs simultaneously at the end and the ligament. Finally, the influences of the perturbed wavenumber, the electric field intensity and the viscosity on the breakup mode and the local dynamics at pinch-off are comprehensively discussed. |
doi_str_mv | 10.1017/jfm.2021.639 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562488647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_639</cupid><sourcerecordid>2562488647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-9601d4357c9cbae24b5b4287de824a5938d768885a81c04ef16991af054073183</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFZv_oCAVxNnP7IfRyn1AwpeFLwtm81um5g0dTcF8-_d0oIXYWAG5nln4EHoFkOBAYuH1vcFAYILTtUZmmHGVS44K8_RDICQHGMCl-gqxhYAU1Bihj6X3js7xmzwmd2YsHZZcJ35MWMzbLNU48ZlrktIGDZTHYZ62pq-sVkVnPna7w65Lk1TXjdHLO1aN8ZrdOFNF93Nqc_Rx9PyffGSr96eXxePq9xSIGOuOOCa0VJYZSvjCKvKihEpaicJM6WishZcSlkaiS0w5zFXChsPJQNBsaRzdHe8uwvD997FUbfDPmzTS01KTpiUnIlE3R8pG4YYg_N6F5rehElj0Ad3OrnTB3c6uUt4ccJNX4WmXru_q_8GfgEOPnCo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562488647</pqid></control><display><type>article</type><title>Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets</title><source>Cambridge Journals Online</source><creator>Nie, Qichun ; Li, Fang ; Ma, Qianli ; Fang, Haisheng ; Yin, Zhouping</creator><creatorcontrib>Nie, Qichun ; Li, Fang ; Ma, Qianli ; Fang, Haisheng ; Yin, Zhouping</creatorcontrib><description>The breakup process of a charged, leaky-dielectric jet subjected to an axial perturbation is computationally analysed from the perspectives of linear and nonlinear dynamics using the arbitrary Lagrangian–Eulerian technique. The linear dynamics of the leaky-dielectric jet is quantitatively predicted by the dispersion relation from the linear stability analysis. Regarding the nonlinear dynamics, it is found that the charge relaxation is responsible for the radial compression of satellite droplets, which is validated by experiments. Two types of charge relaxations, namely, ohmic conduction and surface charge convection, define the pinching process into three breakup modes, i.e. ligament pinching, end pinching and transition pinching. In the ligament-pinching mode, the ohmic conduction dominates the jet breakup since the charge relaxes to the jet ligament instantaneously. In contrast, the surface charge convection takes effect in the end-pinching mode since the surface charge is convected to the jet end via fluid flow. When the ohmic conduction is comparable to the surface charge convection, the breakup occurs simultaneously at the end and the ligament. Finally, the influences of the perturbed wavenumber, the electric field intensity and the viscosity on the breakup mode and the local dynamics at pinch-off are comprehensively discussed.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.639</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Breakup ; Compression ; Computational fluid dynamics ; Conduction ; Convection ; Dynamic stability ; Dynamics ; Electric fields ; Electrodes ; Electrohydrodynamics ; Fluid flow ; JFM Papers ; Ligaments ; Nonlinear dynamics ; Nonlinear systems ; Perturbation ; Shear stress ; Simulation ; Stability analysis ; Surface charge ; Viscosity ; Wavelengths</subject><ispartof>Journal of fluid mechanics, 2021-10, Vol.925, Article A4</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-9601d4357c9cbae24b5b4287de824a5938d768885a81c04ef16991af054073183</citedby><cites>FETCH-LOGICAL-c302t-9601d4357c9cbae24b5b4287de824a5938d768885a81c04ef16991af054073183</cites><orcidid>0000-0001-5766-2337 ; 0000-0001-9825-0101 ; 0000-0002-4436-803X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202100639X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,72960</link.rule.ids></links><search><creatorcontrib>Nie, Qichun</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><creatorcontrib>Fang, Haisheng</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib><title>Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The breakup process of a charged, leaky-dielectric jet subjected to an axial perturbation is computationally analysed from the perspectives of linear and nonlinear dynamics using the arbitrary Lagrangian–Eulerian technique. The linear dynamics of the leaky-dielectric jet is quantitatively predicted by the dispersion relation from the linear stability analysis. Regarding the nonlinear dynamics, it is found that the charge relaxation is responsible for the radial compression of satellite droplets, which is validated by experiments. Two types of charge relaxations, namely, ohmic conduction and surface charge convection, define the pinching process into three breakup modes, i.e. ligament pinching, end pinching and transition pinching. In the ligament-pinching mode, the ohmic conduction dominates the jet breakup since the charge relaxes to the jet ligament instantaneously. In contrast, the surface charge convection takes effect in the end-pinching mode since the surface charge is convected to the jet end via fluid flow. When the ohmic conduction is comparable to the surface charge convection, the breakup occurs simultaneously at the end and the ligament. Finally, the influences of the perturbed wavenumber, the electric field intensity and the viscosity on the breakup mode and the local dynamics at pinch-off are comprehensively discussed.</description><subject>Breakup</subject><subject>Compression</subject><subject>Computational fluid dynamics</subject><subject>Conduction</subject><subject>Convection</subject><subject>Dynamic stability</subject><subject>Dynamics</subject><subject>Electric fields</subject><subject>Electrodes</subject><subject>Electrohydrodynamics</subject><subject>Fluid flow</subject><subject>JFM Papers</subject><subject>Ligaments</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Perturbation</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Surface charge</subject><subject>Viscosity</subject><subject>Wavelengths</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRsFZv_oCAVxNnP7IfRyn1AwpeFLwtm81um5g0dTcF8-_d0oIXYWAG5nln4EHoFkOBAYuH1vcFAYILTtUZmmHGVS44K8_RDICQHGMCl-gqxhYAU1Bihj6X3js7xmzwmd2YsHZZcJ35MWMzbLNU48ZlrktIGDZTHYZ62pq-sVkVnPna7w65Lk1TXjdHLO1aN8ZrdOFNF93Nqc_Rx9PyffGSr96eXxePq9xSIGOuOOCa0VJYZSvjCKvKihEpaicJM6WishZcSlkaiS0w5zFXChsPJQNBsaRzdHe8uwvD997FUbfDPmzTS01KTpiUnIlE3R8pG4YYg_N6F5rehElj0Ad3OrnTB3c6uUt4ccJNX4WmXru_q_8GfgEOPnCo</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Nie, Qichun</creator><creator>Li, Fang</creator><creator>Ma, Qianli</creator><creator>Fang, Haisheng</creator><creator>Yin, Zhouping</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5766-2337</orcidid><orcidid>https://orcid.org/0000-0001-9825-0101</orcidid><orcidid>https://orcid.org/0000-0002-4436-803X</orcidid></search><sort><creationdate>20211025</creationdate><title>Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets</title><author>Nie, Qichun ; Li, Fang ; Ma, Qianli ; Fang, Haisheng ; Yin, Zhouping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-9601d4357c9cbae24b5b4287de824a5938d768885a81c04ef16991af054073183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breakup</topic><topic>Compression</topic><topic>Computational fluid dynamics</topic><topic>Conduction</topic><topic>Convection</topic><topic>Dynamic stability</topic><topic>Dynamics</topic><topic>Electric fields</topic><topic>Electrodes</topic><topic>Electrohydrodynamics</topic><topic>Fluid flow</topic><topic>JFM Papers</topic><topic>Ligaments</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Perturbation</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Surface charge</topic><topic>Viscosity</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Qichun</creatorcontrib><creatorcontrib>Li, Fang</creatorcontrib><creatorcontrib>Ma, Qianli</creatorcontrib><creatorcontrib>Fang, Haisheng</creatorcontrib><creatorcontrib>Yin, Zhouping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Qichun</au><au>Li, Fang</au><au>Ma, Qianli</au><au>Fang, Haisheng</au><au>Yin, Zhouping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>925</volume><artnum>A4</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The breakup process of a charged, leaky-dielectric jet subjected to an axial perturbation is computationally analysed from the perspectives of linear and nonlinear dynamics using the arbitrary Lagrangian–Eulerian technique. The linear dynamics of the leaky-dielectric jet is quantitatively predicted by the dispersion relation from the linear stability analysis. Regarding the nonlinear dynamics, it is found that the charge relaxation is responsible for the radial compression of satellite droplets, which is validated by experiments. Two types of charge relaxations, namely, ohmic conduction and surface charge convection, define the pinching process into three breakup modes, i.e. ligament pinching, end pinching and transition pinching. In the ligament-pinching mode, the ohmic conduction dominates the jet breakup since the charge relaxes to the jet ligament instantaneously. In contrast, the surface charge convection takes effect in the end-pinching mode since the surface charge is convected to the jet end via fluid flow. When the ohmic conduction is comparable to the surface charge convection, the breakup occurs simultaneously at the end and the ligament. Finally, the influences of the perturbed wavenumber, the electric field intensity and the viscosity on the breakup mode and the local dynamics at pinch-off are comprehensively discussed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.639</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0001-5766-2337</orcidid><orcidid>https://orcid.org/0000-0001-9825-0101</orcidid><orcidid>https://orcid.org/0000-0002-4436-803X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-10, Vol.925, Article A4 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2562488647 |
source | Cambridge Journals Online |
subjects | Breakup Compression Computational fluid dynamics Conduction Convection Dynamic stability Dynamics Electric fields Electrodes Electrohydrodynamics Fluid flow JFM Papers Ligaments Nonlinear dynamics Nonlinear systems Perturbation Shear stress Simulation Stability analysis Surface charge Viscosity Wavelengths |
title | Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20charge%20relaxation%20on%20the%20electrohydrodynamic%20breakup%20of%20leaky-dielectric%20jets&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Nie,%20Qichun&rft.date=2021-10-25&rft.volume=925&rft.artnum=A4&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.639&rft_dat=%3Cproquest_cross%3E2562488647%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-9601d4357c9cbae24b5b4287de824a5938d768885a81c04ef16991af054073183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562488647&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_639&rfr_iscdi=true |