Loading…
Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites
Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of h...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2020-05, Vol.864 (1), p.12132 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73 |
---|---|
cites | cdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73 |
container_end_page | |
container_issue | 1 |
container_start_page | 12132 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 864 |
creator | Ayunie Ahmad Khairudin, Norhanis Shamimi Rohaizad, Nurfatin Salihah Abdul Nasir, Aimi Chee Chin, Lim Jaafar, Haryati Mohamed, Zeehaida |
description | Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%. |
doi_str_mv | 10.1088/1757-899X/864/1/012132 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562530588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562530588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQJe6E1tkjZteilD3WBjwiZ4F9ImWTP7ZdIiXvjfTalMBMGrJCfPeTnn8bxLBG8RpDRACUl8mqYvAY2jAAUQYRTiI29y-Dg-3Ck69c6s3UMYJ1EEJ97nouI7CTZyV8m6451uatBbXe_Aq19JXlswK3vbSTOUeC3AurP9tQXbwkhbNKUY6u-6KxzHrdVK52PISnZFI4BqDJj3Fa_Bou6k7XTNS_DEDbfaPc-9E8VLKy--z6n3_HC_nc395fpxMbtb-nmIMfYjknGiMEQIq5QQIiEnUZpGEc6pSARJMkhTFUG3USwzLhQRiQpFFsoMhzxLwql3Nea2pnnr3Rhs3_TGjWIZJjEmISSUOioeqdw01hqpWGt0xc0HQ5ANqtlgkQ1GmVPNEBtVu8absVE37U_yanP_C2OtUA7Ff6D_5H8BmiCPfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562530588</pqid></control><display><type>article</type><title>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</title><source>ProQuest - Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Ayunie Ahmad Khairudin, Norhanis ; Shamimi Rohaizad, Nurfatin ; Salihah Abdul Nasir, Aimi ; Chee Chin, Lim ; Jaafar, Haryati ; Mohamed, Zeehaida</creator><creatorcontrib>Ayunie Ahmad Khairudin, Norhanis ; Shamimi Rohaizad, Nurfatin ; Salihah Abdul Nasir, Aimi ; Chee Chin, Lim ; Jaafar, Haryati ; Mohamed, Zeehaida</creatorcontrib><description>Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/864/1/012132</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Classification ; Cluster analysis ; Clustering ; Color ; Feature extraction ; Image classification ; Image contrast ; Image enhancement ; Image processing ; Image segmentation ; Parasites ; Vector quantization</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-05, Vol.864 (1), p.12132</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</citedby><cites>FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2562530588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ayunie Ahmad Khairudin, Norhanis</creatorcontrib><creatorcontrib>Shamimi Rohaizad, Nurfatin</creatorcontrib><creatorcontrib>Salihah Abdul Nasir, Aimi</creatorcontrib><creatorcontrib>Chee Chin, Lim</creatorcontrib><creatorcontrib>Jaafar, Haryati</creatorcontrib><creatorcontrib>Mohamed, Zeehaida</creatorcontrib><title>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%.</description><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Color</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Parasites</subject><subject>Vector quantization</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQJe6E1tkjZteilD3WBjwiZ4F9ImWTP7ZdIiXvjfTalMBMGrJCfPeTnn8bxLBG8RpDRACUl8mqYvAY2jAAUQYRTiI29y-Dg-3Ck69c6s3UMYJ1EEJ97nouI7CTZyV8m6451uatBbXe_Aq19JXlswK3vbSTOUeC3AurP9tQXbwkhbNKUY6u-6KxzHrdVK52PISnZFI4BqDJj3Fa_Bou6k7XTNS_DEDbfaPc-9E8VLKy--z6n3_HC_nc395fpxMbtb-nmIMfYjknGiMEQIq5QQIiEnUZpGEc6pSARJMkhTFUG3USwzLhQRiQpFFsoMhzxLwql3Nea2pnnr3Rhs3_TGjWIZJjEmISSUOioeqdw01hqpWGt0xc0HQ5ANqtlgkQ1GmVPNEBtVu8absVE37U_yanP_C2OtUA7Ff6D_5H8BmiCPfg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ayunie Ahmad Khairudin, Norhanis</creator><creator>Shamimi Rohaizad, Nurfatin</creator><creator>Salihah Abdul Nasir, Aimi</creator><creator>Chee Chin, Lim</creator><creator>Jaafar, Haryati</creator><creator>Mohamed, Zeehaida</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200501</creationdate><title>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</title><author>Ayunie Ahmad Khairudin, Norhanis ; Shamimi Rohaizad, Nurfatin ; Salihah Abdul Nasir, Aimi ; Chee Chin, Lim ; Jaafar, Haryati ; Mohamed, Zeehaida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Color</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Parasites</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayunie Ahmad Khairudin, Norhanis</creatorcontrib><creatorcontrib>Shamimi Rohaizad, Nurfatin</creatorcontrib><creatorcontrib>Salihah Abdul Nasir, Aimi</creatorcontrib><creatorcontrib>Chee Chin, Lim</creatorcontrib><creatorcontrib>Jaafar, Haryati</creatorcontrib><creatorcontrib>Mohamed, Zeehaida</creatorcontrib><collection>IOP Publishing Free Content(OpenAccess)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayunie Ahmad Khairudin, Norhanis</au><au>Shamimi Rohaizad, Nurfatin</au><au>Salihah Abdul Nasir, Aimi</au><au>Chee Chin, Lim</au><au>Jaafar, Haryati</au><au>Mohamed, Zeehaida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>864</volume><issue>1</issue><spage>12132</spage><pages>12132-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/864/1/012132</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-05, Vol.864 (1), p.12132 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562530588 |
source | ProQuest - Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Classification Cluster analysis Clustering Color Feature extraction Image classification Image contrast Image enhancement Image processing Image segmentation Parasites Vector quantization |
title | Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Segmentation%20using%20k-means%20Clustering%20and%20Otsu's%20Thresholding%20with%20Classification%20Method%20for%20Human%20Intestinal%20Parasites&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Ayunie%20Ahmad%20Khairudin,%20Norhanis&rft.date=2020-05-01&rft.volume=864&rft.issue=1&rft.spage=12132&rft.pages=12132-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/864/1/012132&rft_dat=%3Cproquest_iop_j%3E2562530588%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562530588&rft_id=info:pmid/&rfr_iscdi=true |