Loading…

Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites

Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of h...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2020-05, Vol.864 (1), p.12132
Main Authors: Ayunie Ahmad Khairudin, Norhanis, Shamimi Rohaizad, Nurfatin, Salihah Abdul Nasir, Aimi, Chee Chin, Lim, Jaafar, Haryati, Mohamed, Zeehaida
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73
cites cdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73
container_end_page
container_issue 1
container_start_page 12132
container_title IOP conference series. Materials Science and Engineering
container_volume 864
creator Ayunie Ahmad Khairudin, Norhanis
Shamimi Rohaizad, Nurfatin
Salihah Abdul Nasir, Aimi
Chee Chin, Lim
Jaafar, Haryati
Mohamed, Zeehaida
description Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%.
doi_str_mv 10.1088/1757-899X/864/1/012132
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2562530588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562530588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQJe6E1tkjZteilD3WBjwiZ4F9ImWTP7ZdIiXvjfTalMBMGrJCfPeTnn8bxLBG8RpDRACUl8mqYvAY2jAAUQYRTiI29y-Dg-3Ck69c6s3UMYJ1EEJ97nouI7CTZyV8m6451uatBbXe_Aq19JXlswK3vbSTOUeC3AurP9tQXbwkhbNKUY6u-6KxzHrdVK52PISnZFI4BqDJj3Fa_Bou6k7XTNS_DEDbfaPc-9E8VLKy--z6n3_HC_nc395fpxMbtb-nmIMfYjknGiMEQIq5QQIiEnUZpGEc6pSARJMkhTFUG3USwzLhQRiQpFFsoMhzxLwql3Nea2pnnr3Rhs3_TGjWIZJjEmISSUOioeqdw01hqpWGt0xc0HQ5ANqtlgkQ1GmVPNEBtVu8absVE37U_yanP_C2OtUA7Ff6D_5H8BmiCPfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562530588</pqid></control><display><type>article</type><title>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</title><source>ProQuest - Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Ayunie Ahmad Khairudin, Norhanis ; Shamimi Rohaizad, Nurfatin ; Salihah Abdul Nasir, Aimi ; Chee Chin, Lim ; Jaafar, Haryati ; Mohamed, Zeehaida</creator><creatorcontrib>Ayunie Ahmad Khairudin, Norhanis ; Shamimi Rohaizad, Nurfatin ; Salihah Abdul Nasir, Aimi ; Chee Chin, Lim ; Jaafar, Haryati ; Mohamed, Zeehaida</creatorcontrib><description>Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/864/1/012132</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Classification ; Cluster analysis ; Clustering ; Color ; Feature extraction ; Image classification ; Image contrast ; Image enhancement ; Image processing ; Image segmentation ; Parasites ; Vector quantization</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-05, Vol.864 (1), p.12132</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</citedby><cites>FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2562530588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ayunie Ahmad Khairudin, Norhanis</creatorcontrib><creatorcontrib>Shamimi Rohaizad, Nurfatin</creatorcontrib><creatorcontrib>Salihah Abdul Nasir, Aimi</creatorcontrib><creatorcontrib>Chee Chin, Lim</creatorcontrib><creatorcontrib>Jaafar, Haryati</creatorcontrib><creatorcontrib>Mohamed, Zeehaida</creatorcontrib><title>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%.</description><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Color</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Parasites</subject><subject>Vector quantization</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQJe6E1tkjZteilD3WBjwiZ4F9ImWTP7ZdIiXvjfTalMBMGrJCfPeTnn8bxLBG8RpDRACUl8mqYvAY2jAAUQYRTiI29y-Dg-3Ck69c6s3UMYJ1EEJ97nouI7CTZyV8m6451uatBbXe_Aq19JXlswK3vbSTOUeC3AurP9tQXbwkhbNKUY6u-6KxzHrdVK52PISnZFI4BqDJj3Fa_Bou6k7XTNS_DEDbfaPc-9E8VLKy--z6n3_HC_nc395fpxMbtb-nmIMfYjknGiMEQIq5QQIiEnUZpGEc6pSARJMkhTFUG3USwzLhQRiQpFFsoMhzxLwql3Nea2pnnr3Rhs3_TGjWIZJjEmISSUOioeqdw01hqpWGt0xc0HQ5ANqtlgkQ1GmVPNEBtVu8absVE37U_yanP_C2OtUA7Ff6D_5H8BmiCPfg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ayunie Ahmad Khairudin, Norhanis</creator><creator>Shamimi Rohaizad, Nurfatin</creator><creator>Salihah Abdul Nasir, Aimi</creator><creator>Chee Chin, Lim</creator><creator>Jaafar, Haryati</creator><creator>Mohamed, Zeehaida</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200501</creationdate><title>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</title><author>Ayunie Ahmad Khairudin, Norhanis ; Shamimi Rohaizad, Nurfatin ; Salihah Abdul Nasir, Aimi ; Chee Chin, Lim ; Jaafar, Haryati ; Mohamed, Zeehaida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Color</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Parasites</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayunie Ahmad Khairudin, Norhanis</creatorcontrib><creatorcontrib>Shamimi Rohaizad, Nurfatin</creatorcontrib><creatorcontrib>Salihah Abdul Nasir, Aimi</creatorcontrib><creatorcontrib>Chee Chin, Lim</creatorcontrib><creatorcontrib>Jaafar, Haryati</creatorcontrib><creatorcontrib>Mohamed, Zeehaida</creatorcontrib><collection>IOP Publishing Free Content(OpenAccess)</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayunie Ahmad Khairudin, Norhanis</au><au>Shamimi Rohaizad, Nurfatin</au><au>Salihah Abdul Nasir, Aimi</au><au>Chee Chin, Lim</au><au>Jaafar, Haryati</au><au>Mohamed, Zeehaida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>864</volume><issue>1</issue><spage>12132</spage><pages>12132-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Helminth is one of the intestinal parasites that may cause harm and death to human. It is very important to have a system that is capable of assisting the technologist in investigating of fecal samples. In this paper, an automatic classification process is proposed to detect the different types of helminth eggs from fecal samples by using image processing technique. 50 samples of Ascaris Lumbricoides Ova (ALO) and Trichuris Trichiura Ova (TTO) are tested. First, these images undergo partial contrast stretching (PCS) technique to enhance the target images. Next, RGB and HSV color model have been compared in order to identify which color component is able to ease the segmentation process. S component shows a good results with high contrast between the target and the unwanted region. Then, Otsu's thresholding and k-means clustering are compared in order to to select the most suitable image processing method to be used in classification procedure. k-means clustering shows a better results compared to Otsu's thresholding. In classification process, area and size have been chosen as the feature to extract for the classification. The ratio for successfully detected ALO species is 84% while TTO is 76%.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/864/1/012132</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-05, Vol.864 (1), p.12132
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2562530588
source ProQuest - Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Classification
Cluster analysis
Clustering
Color
Feature extraction
Image classification
Image contrast
Image enhancement
Image processing
Image segmentation
Parasites
Vector quantization
title Image Segmentation using k-means Clustering and Otsu's Thresholding with Classification Method for Human Intestinal Parasites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Segmentation%20using%20k-means%20Clustering%20and%20Otsu's%20Thresholding%20with%20Classification%20Method%20for%20Human%20Intestinal%20Parasites&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Ayunie%20Ahmad%20Khairudin,%20Norhanis&rft.date=2020-05-01&rft.volume=864&rft.issue=1&rft.spage=12132&rft.pages=12132-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/864/1/012132&rft_dat=%3Cproquest_iop_j%3E2562530588%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3222-45ba5f20112f9555e0a5499442c8d7d57b089f404406ebadf5d7f3db3eb23ab73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562530588&rft_id=info:pmid/&rfr_iscdi=true