Loading…

Computations of relative topological coHochschild homology

Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen developed a coB\"okstedt spectral sequence to compute the homology of coTHH for coalgebras over the sphere spectrum. We construct a relative c...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Author: Klanderman, Sarah
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Klanderman, Sarah
description Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen developed a coB\"okstedt spectral sequence to compute the homology of coTHH for coalgebras over the sphere spectrum. We construct a relative coB\"okstedt spectral sequence to study coTHH of coalgebra spectra over any commutative ring spectrum \(R\). Further, we use algebraic structures in this spectral sequence to complete some calculations of the homotopy groups of relative topological coHochschild homology.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2562650852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562650852</sourcerecordid><originalsourceid>FETCH-proquest_journals_25626508523</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxBcTi9ui9ADuS4mpSUn7Yj6Ct7eCB3A1DDMrUgDnh6o-AmxIGePIGAN5AiF4Qc4NTj6nPlmcI8WBBu0WeWma0KPDh1W9owpbVCYqY92dGpy-4b0j66F3UZc_bsn-erk1beUDPrOOqRsxh3lJHQgJUrBaAP_v-gAw3De-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562650852</pqid></control><display><type>article</type><title>Computations of relative topological coHochschild homology</title><source>Publicly Available Content (ProQuest)</source><creator>Klanderman, Sarah</creator><creatorcontrib>Klanderman, Sarah</creatorcontrib><description>Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen developed a coB\"okstedt spectral sequence to compute the homology of coTHH for coalgebras over the sphere spectrum. We construct a relative coB\"okstedt spectral sequence to study coTHH of coalgebra spectra over any commutative ring spectrum \(R\). Further, we use algebraic structures in this spectral sequence to complete some calculations of the homotopy groups of relative topological coHochschild homology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Commutativity ; Homology ; Rings (mathematics) ; Spectra ; Topology</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2562650852?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Klanderman, Sarah</creatorcontrib><title>Computations of relative topological coHochschild homology</title><title>arXiv.org</title><description>Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen developed a coB\"okstedt spectral sequence to compute the homology of coTHH for coalgebras over the sphere spectrum. We construct a relative coB\"okstedt spectral sequence to study coTHH of coalgebra spectra over any commutative ring spectrum \(R\). Further, we use algebraic structures in this spectral sequence to complete some calculations of the homotopy groups of relative topological coHochschild homology.</description><subject>Commutativity</subject><subject>Homology</subject><subject>Rings (mathematics)</subject><subject>Spectra</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxBcTi9ui9ADuS4mpSUn7Yj6Ct7eCB3A1DDMrUgDnh6o-AmxIGePIGAN5AiF4Qc4NTj6nPlmcI8WBBu0WeWma0KPDh1W9owpbVCYqY92dGpy-4b0j66F3UZc_bsn-erk1beUDPrOOqRsxh3lJHQgJUrBaAP_v-gAw3De-</recordid><startdate>20210817</startdate><enddate>20210817</enddate><creator>Klanderman, Sarah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210817</creationdate><title>Computations of relative topological coHochschild homology</title><author>Klanderman, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25626508523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Commutativity</topic><topic>Homology</topic><topic>Rings (mathematics)</topic><topic>Spectra</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Klanderman, Sarah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klanderman, Sarah</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Computations of relative topological coHochschild homology</atitle><jtitle>arXiv.org</jtitle><date>2021-08-17</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Hess and Shipley defined an invariant of coalgebra spectra called topological coHochschild homology, and Bohmann-Gerhardt-Høgenhaven-Shipley-Ziegenhagen developed a coB\"okstedt spectral sequence to compute the homology of coTHH for coalgebras over the sphere spectrum. We construct a relative coB\"okstedt spectral sequence to study coTHH of coalgebra spectra over any commutative ring spectrum \(R\). Further, we use algebraic structures in this spectral sequence to complete some calculations of the homotopy groups of relative topological coHochschild homology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2562650852
source Publicly Available Content (ProQuest)
subjects Commutativity
Homology
Rings (mathematics)
Spectra
Topology
title Computations of relative topological coHochschild homology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A19%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Computations%20of%20relative%20topological%20coHochschild%20homology&rft.jtitle=arXiv.org&rft.au=Klanderman,%20Sarah&rft.date=2021-08-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2562650852%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25626508523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562650852&rft_id=info:pmid/&rfr_iscdi=true