Loading…

Secure and efficient mutual authentication protocol for smart grid under blockchain

Smart grid has been acknowledged as the next-generation intelligent network that optimizes energy efficiency. Primarily through a bidirectional communication channel, suppliers and users can dynamically adjust power transmission in real time. Nonetheless, many security issues occur with the widespre...

Full description

Saved in:
Bibliographic Details
Published in:Peer-to-peer networking and applications 2021-09, Vol.14 (5), p.2681-2693
Main Authors: Wang, Weizheng, Huang, Huakun, Zhang, Lejun, Su, Chunhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Smart grid has been acknowledged as the next-generation intelligent network that optimizes energy efficiency. Primarily through a bidirectional communication channel, suppliers and users can dynamically adjust power transmission in real time. Nonetheless, many security issues occur with the widespread deployment of smart grid, e.g., centralized register authority and potential Distributed-Denial-of-Service (DDoS) attack. These existing problems threaten the availability of smart grid. In this paper, we mainly focus on solving some identity authentication issues remained in the smart grid. Combined with blockchain, Elliptic Curve Cryptography (ECC), dynamic Join-and-Exit mechanism and batch verification, a reliable and efficient authentication protocol is proposed for smart meters and utility centers. Simultaneously, the provable security of this protocol is assured by the computational hard problem assumptions. Experiment results show that our protocol has achieved security and performance improvement compared with the other ECC related schemes.
ISSN:1936-6442
1936-6450
DOI:10.1007/s12083-020-01020-2