Loading…
Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries
The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2020-09, Vol.927 (1), p.12015 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743 |
---|---|
cites | cdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743 |
container_end_page | |
container_issue | 1 |
container_start_page | 12015 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 927 |
creator | Bardin, Boris S Avdyushkin, Andrey N |
description | The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point
L
1
is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained. |
doi_str_mv | 10.1088/1757-899X/927/1/012015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562780202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562780202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</originalsourceid><addsrcrecordid>eNo9kM9OwzAMxiMEEmPwCigS51InTZr0iCb-SZM4ABK3KG0TlqlruiRD2jvw0LQMdopjf7Y__xC6JnBLQMqcCC4yWVUfeUVFTnIgFAg_QbNj4fQYS3KOLmJcA5SCMZih79eka9e5tMfe4rQyuPFd53qjAx686xNeYoJd_1saOt2P-WBiCq5JpsXDyif_GfSXSzo53-tuFAZjstq3ezwEX3dm89_e6GimLWa7G3UbHaOJ038IbqODM_ESnVndRXP1987R-8P92-IpW748Pi_ulllDqKRZKSQrK24lMMYbbgW3uoLaGALcArG0EJS1zLYFrYmgujQgGCUVJ1DJQrBijm4Oc0eD2914jVr7XRjNR0V5SYUECnRUlQdVE3yMwVh1MLpXBNREXk1Q1QRYjeQVUQfyxQ_hkHeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562780202</pqid></control><display><type>article</type><title>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Bardin, Boris S ; Avdyushkin, Andrey N</creator><creatorcontrib>Bardin, Boris S ; Avdyushkin, Andrey N</creatorcontrib><description>The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point
L
1
is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/927/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Canonical forms ; Radiation pressure ; Stability ; Three body problem</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-09, Vol.927 (1), p.12015</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</citedby><cites>FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2562780202?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Bardin, Boris S</creatorcontrib><creatorcontrib>Avdyushkin, Andrey N</creatorcontrib><title>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</title><title>IOP conference series. Materials Science and Engineering</title><description>The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point
L
1
is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained.</description><subject>Canonical forms</subject><subject>Radiation pressure</subject><subject>Stability</subject><subject>Three body problem</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kM9OwzAMxiMEEmPwCigS51InTZr0iCb-SZM4ABK3KG0TlqlruiRD2jvw0LQMdopjf7Y__xC6JnBLQMqcCC4yWVUfeUVFTnIgFAg_QbNj4fQYS3KOLmJcA5SCMZih79eka9e5tMfe4rQyuPFd53qjAx686xNeYoJd_1saOt2P-WBiCq5JpsXDyif_GfSXSzo53-tuFAZjstq3ezwEX3dm89_e6GimLWa7G3UbHaOJ038IbqODM_ESnVndRXP1987R-8P92-IpW748Pi_ulllDqKRZKSQrK24lMMYbbgW3uoLaGALcArG0EJS1zLYFrYmgujQgGCUVJ1DJQrBijm4Oc0eD2914jVr7XRjNR0V5SYUECnRUlQdVE3yMwVh1MLpXBNREXk1Q1QRYjeQVUQfyxQ_hkHeI</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bardin, Boris S</creator><creator>Avdyushkin, Andrey N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</title><author>Bardin, Boris S ; Avdyushkin, Andrey N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Canonical forms</topic><topic>Radiation pressure</topic><topic>Stability</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardin, Boris S</creatorcontrib><creatorcontrib>Avdyushkin, Andrey N</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardin, Boris S</au><au>Avdyushkin, Andrey N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>927</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point
L
1
is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/927/1/012015</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-09, Vol.927 (1), p.12015 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2562780202 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Canonical forms Radiation pressure Stability Three body problem |
title | Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20collinear%20point%20L%201%20in%20the%20planar%20restricted%20photogravitational%20three-body%20problem%20in%20the%20case%20of%20equal%20masses%20of%20primaries&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Bardin,%20Boris%20S&rft.date=2020-09-01&rft.volume=927&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/927/1/012015&rft_dat=%3Cproquest_cross%3E2562780202%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562780202&rft_id=info:pmid/&rfr_iscdi=true |