Loading…

Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries

The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2020-09, Vol.927 (1), p.12015
Main Authors: Bardin, Boris S, Avdyushkin, Andrey N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743
cites cdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743
container_end_page
container_issue 1
container_start_page 12015
container_title IOP conference series. Materials Science and Engineering
container_volume 927
creator Bardin, Boris S
Avdyushkin, Andrey N
description The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point L 1 is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained.
doi_str_mv 10.1088/1757-899X/927/1/012015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562780202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562780202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</originalsourceid><addsrcrecordid>eNo9kM9OwzAMxiMEEmPwCigS51InTZr0iCb-SZM4ABK3KG0TlqlruiRD2jvw0LQMdopjf7Y__xC6JnBLQMqcCC4yWVUfeUVFTnIgFAg_QbNj4fQYS3KOLmJcA5SCMZih79eka9e5tMfe4rQyuPFd53qjAx686xNeYoJd_1saOt2P-WBiCq5JpsXDyif_GfSXSzo53-tuFAZjstq3ezwEX3dm89_e6GimLWa7G3UbHaOJ038IbqODM_ESnVndRXP1987R-8P92-IpW748Pi_ulllDqKRZKSQrK24lMMYbbgW3uoLaGALcArG0EJS1zLYFrYmgujQgGCUVJ1DJQrBijm4Oc0eD2914jVr7XRjNR0V5SYUECnRUlQdVE3yMwVh1MLpXBNREXk1Q1QRYjeQVUQfyxQ_hkHeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562780202</pqid></control><display><type>article</type><title>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Bardin, Boris S ; Avdyushkin, Andrey N</creator><creatorcontrib>Bardin, Boris S ; Avdyushkin, Andrey N</creatorcontrib><description>The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point L 1 is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/927/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Canonical forms ; Radiation pressure ; Stability ; Three body problem</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-09, Vol.927 (1), p.12015</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</citedby><cites>FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2562780202?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Bardin, Boris S</creatorcontrib><creatorcontrib>Avdyushkin, Andrey N</creatorcontrib><title>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</title><title>IOP conference series. Materials Science and Engineering</title><description>The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point L 1 is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained.</description><subject>Canonical forms</subject><subject>Radiation pressure</subject><subject>Stability</subject><subject>Three body problem</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kM9OwzAMxiMEEmPwCigS51InTZr0iCb-SZM4ABK3KG0TlqlruiRD2jvw0LQMdopjf7Y__xC6JnBLQMqcCC4yWVUfeUVFTnIgFAg_QbNj4fQYS3KOLmJcA5SCMZih79eka9e5tMfe4rQyuPFd53qjAx686xNeYoJd_1saOt2P-WBiCq5JpsXDyif_GfSXSzo53-tuFAZjstq3ezwEX3dm89_e6GimLWa7G3UbHaOJ038IbqODM_ESnVndRXP1987R-8P92-IpW748Pi_ulllDqKRZKSQrK24lMMYbbgW3uoLaGALcArG0EJS1zLYFrYmgujQgGCUVJ1DJQrBijm4Oc0eD2914jVr7XRjNR0V5SYUECnRUlQdVE3yMwVh1MLpXBNREXk1Q1QRYjeQVUQfyxQ_hkHeI</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Bardin, Boris S</creator><creator>Avdyushkin, Andrey N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200901</creationdate><title>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</title><author>Bardin, Boris S ; Avdyushkin, Andrey N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Canonical forms</topic><topic>Radiation pressure</topic><topic>Stability</topic><topic>Three body problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardin, Boris S</creatorcontrib><creatorcontrib>Avdyushkin, Andrey N</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardin, Boris S</au><au>Avdyushkin, Andrey N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>927</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>The planar restricted photogravitational three-body problem is considered. The motion of an infinitesimal small body (particle) under the Newtonian gravitational attraction of two bodies (primaries) is studied. It is supposed that primaries having equal masses move in weakly elliptic orbits and act on the particle with radiation pressure repulsive forces. Using the method of normal forms, the nonlinear stability study of the collinear point L 1 is performed and rigorous conclusions on stability in the sense of Lyapunov or formal stability are obtained.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/927/1/012015</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-09, Vol.927 (1), p.12015
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2562780202
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Canonical forms
Radiation pressure
Stability
Three body problem
title Stability of the collinear point L 1 in the planar restricted photogravitational three-body problem in the case of equal masses of primaries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20the%20collinear%20point%20L%201%20in%20the%20planar%20restricted%20photogravitational%20three-body%20problem%20in%20the%20case%20of%20equal%20masses%20of%20primaries&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Bardin,%20Boris%20S&rft.date=2020-09-01&rft.volume=927&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/927/1/012015&rft_dat=%3Cproquest_cross%3E2562780202%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1282-6784695f80445c5f75fa90bee105f01f23724d4fd32b172a6e074219510983743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562780202&rft_id=info:pmid/&rfr_iscdi=true