Loading…

SEPARATION AXIOMS IN SOFT TRITOPOLOGICAL SPACES WITH RESPECT TO SOFT POINTS

In the present paper the definitions of separation axioms in soft -tritopological spaces are introduced dependent to the soft - δ* - open set and their basic properties are investigated with respect to soft - points. That is, the soft - δ* - Ti; ( i = 0,1,2,3,4 ) spaces and notions of soft - δ* - no...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2020-11, Vol.928 (4), p.42032
Main Authors: Hussein Abbas, Ali, Flieh Hassan, Asmhan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2692-4e0ad08395ff92bf43852b1495a0820dd11a8d86626d77e32617fb568174e6c13
container_end_page
container_issue 4
container_start_page 42032
container_title IOP conference series. Materials Science and Engineering
container_volume 928
creator Hussein Abbas, Ali
Flieh Hassan, Asmhan
description In the present paper the definitions of separation axioms in soft -tritopological spaces are introduced dependent to the soft - δ* - open set and their basic properties are investigated with respect to soft - points. That is, the soft - δ* - Ti; ( i = 0,1,2,3,4 ) spaces and notions of soft - δ* - normal and soft - δ* -regular spaces are discussed in detail, also we introduce some theorems shows how one of the soft -spaces implies the others with the help of an examples it is established that the converse does not hold.
doi_str_mv 10.1088/1757-899X/928/4/042032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2562788218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562788218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2692-4e0ad08395ff92bf43852b1495a0820dd11a8d86626d77e32617fb568174e6c13</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObpGk-LkvpXHBbyhJxd6FbG9hQW1t34b-3o2MiCF6dA-d53wMPALcYPWAkRIh5zAMh5SqURIQ0RJSgiJyB0elwftoFvgRXXbdDiHFK0Qg8mSxPlolVegGTldJzA9UCGj2x0C6V1bme6UeVJjNo8iTNDHxRdgqXmcmztEf0gOZaLay5Bhe-eO2qm-Mcg-dJZtNpcKwINoRJEtAKFSUSkYy9l2TtaSRissZUxgUSBJUlxoUoBWOElZxXEWGY-3XMBOa0YhscjcHd0Nu09ce-6j7drt637_1LR2JGuBAEi55iA7Vp665rK--advtWtF8OI3cQ5w5O3MGP68U56gZxffB-CG7r5qd5brJfmGtK36PkD_Sf_m_3unSu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562788218</pqid></control><display><type>article</type><title>SEPARATION AXIOMS IN SOFT TRITOPOLOGICAL SPACES WITH RESPECT TO SOFT POINTS</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Hussein Abbas, Ali ; Flieh Hassan, Asmhan</creator><creatorcontrib>Hussein Abbas, Ali ; Flieh Hassan, Asmhan</creatorcontrib><description>In the present paper the definitions of separation axioms in soft -tritopological spaces are introduced dependent to the soft - δ* - open set and their basic properties are investigated with respect to soft - points. That is, the soft - δ* - Ti; ( i = 0,1,2,3,4 ) spaces and notions of soft - δ* - normal and soft - δ* -regular spaces are discussed in detail, also we introduce some theorems shows how one of the soft -spaces implies the others with the help of an examples it is established that the converse does not hold.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/928/4/042032</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>0,1,2,3,4) space ; Axioms ; normal space ; point ; regular space ; Separation ; set ; T ; tritopological space</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-11, Vol.928 (4), p.42032</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2692-4e0ad08395ff92bf43852b1495a0820dd11a8d86626d77e32617fb568174e6c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2562788218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Hussein Abbas, Ali</creatorcontrib><creatorcontrib>Flieh Hassan, Asmhan</creatorcontrib><title>SEPARATION AXIOMS IN SOFT TRITOPOLOGICAL SPACES WITH RESPECT TO SOFT POINTS</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>In the present paper the definitions of separation axioms in soft -tritopological spaces are introduced dependent to the soft - δ* - open set and their basic properties are investigated with respect to soft - points. That is, the soft - δ* - Ti; ( i = 0,1,2,3,4 ) spaces and notions of soft - δ* - normal and soft - δ* -regular spaces are discussed in detail, also we introduce some theorems shows how one of the soft -spaces implies the others with the help of an examples it is established that the converse does not hold.</description><subject>0,1,2,3,4) space</subject><subject>Axioms</subject><subject>normal space</subject><subject>point</subject><subject>regular space</subject><subject>Separation</subject><subject>set</subject><subject>T</subject><subject>tritopological space</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObpGk-LkvpXHBbyhJxd6FbG9hQW1t34b-3o2MiCF6dA-d53wMPALcYPWAkRIh5zAMh5SqURIQ0RJSgiJyB0elwftoFvgRXXbdDiHFK0Qg8mSxPlolVegGTldJzA9UCGj2x0C6V1bme6UeVJjNo8iTNDHxRdgqXmcmztEf0gOZaLay5Bhe-eO2qm-Mcg-dJZtNpcKwINoRJEtAKFSUSkYy9l2TtaSRissZUxgUSBJUlxoUoBWOElZxXEWGY-3XMBOa0YhscjcHd0Nu09ce-6j7drt637_1LR2JGuBAEi55iA7Vp665rK--advtWtF8OI3cQ5w5O3MGP68U56gZxffB-CG7r5qd5brJfmGtK36PkD_Sf_m_3unSu</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Hussein Abbas, Ali</creator><creator>Flieh Hassan, Asmhan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201101</creationdate><title>SEPARATION AXIOMS IN SOFT TRITOPOLOGICAL SPACES WITH RESPECT TO SOFT POINTS</title><author>Hussein Abbas, Ali ; Flieh Hassan, Asmhan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2692-4e0ad08395ff92bf43852b1495a0820dd11a8d86626d77e32617fb568174e6c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>0,1,2,3,4) space</topic><topic>Axioms</topic><topic>normal space</topic><topic>point</topic><topic>regular space</topic><topic>Separation</topic><topic>set</topic><topic>T</topic><topic>tritopological space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussein Abbas, Ali</creatorcontrib><creatorcontrib>Flieh Hassan, Asmhan</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussein Abbas, Ali</au><au>Flieh Hassan, Asmhan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEPARATION AXIOMS IN SOFT TRITOPOLOGICAL SPACES WITH RESPECT TO SOFT POINTS</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>928</volume><issue>4</issue><spage>42032</spage><pages>42032-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>In the present paper the definitions of separation axioms in soft -tritopological spaces are introduced dependent to the soft - δ* - open set and their basic properties are investigated with respect to soft - points. That is, the soft - δ* - Ti; ( i = 0,1,2,3,4 ) spaces and notions of soft - δ* - normal and soft - δ* -regular spaces are discussed in detail, also we introduce some theorems shows how one of the soft -spaces implies the others with the help of an examples it is established that the converse does not hold.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/928/4/042032</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-11, Vol.928 (4), p.42032
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2562788218
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects 0,1,2,3,4) space
Axioms
normal space
point
regular space
Separation
set
T
tritopological space
title SEPARATION AXIOMS IN SOFT TRITOPOLOGICAL SPACES WITH RESPECT TO SOFT POINTS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A54%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEPARATION%20AXIOMS%20IN%20SOFT%20TRITOPOLOGICAL%20SPACES%20WITH%20RESPECT%20TO%20SOFT%20POINTS&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Hussein%20Abbas,%20Ali&rft.date=2020-11-01&rft.volume=928&rft.issue=4&rft.spage=42032&rft.pages=42032-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/928/4/042032&rft_dat=%3Cproquest_cross%3E2562788218%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2692-4e0ad08395ff92bf43852b1495a0820dd11a8d86626d77e32617fb568174e6c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562788218&rft_id=info:pmid/&rfr_iscdi=true