Loading…

The protective role of PHB and its degradation products against stress situations in bacteria

ABSTRACT Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the mo...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology reviews 2021-05, Vol.45 (3), p.1
Main Authors: Müller-Santos, Marcelo, Koskimäki, Janne J, Alves, Luis Paulo Silveira, de Souza, Emanuel Maltempi, Jendrossek, Dieter, Pirttilä, Anna Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183
cites cdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183
container_end_page
container_issue 3
container_start_page 1
container_title FEMS microbiology reviews
container_volume 45
creator Müller-Santos, Marcelo
Koskimäki, Janne J
Alves, Luis Paulo Silveira
de Souza, Emanuel Maltempi
Jendrossek, Dieter
Pirttilä, Anna Maria
description ABSTRACT Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented. PHB cycle as a stress reliever in bacteria.
doi_str_mv 10.1093/femsre/fuaa058
format article
fullrecord <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_journals_2562837329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A700444918</galeid><oup_id>10.1093/femsre/fuaa058</oup_id><sourcerecordid>A700444918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</originalsourceid><addsrcrecordid>eNqFkUlrHDEQhUVIiLdcczSCnHIYW71Iah2dIV7AEJPYRyNKUmksM92aSGqT_Hu37fEGBqNDieJ7r6p4hHyt2F7FVLPvsc8J9_0IwHj3gWxWXLYzoaT4-OK_QbZyvmaMccX5Z7LRNFXVMSY2yeX5FdJVigVtCTdIU1wijZ6eHf-gMDgaSqYOFwkclBCHO9SNdmrCAsKQC80lYc40hzLeE5mGgRqwBVOAHfLJwzLjl3XdJheHP8_nx7PTX0cn84PTmeWiLbMObWck89JZxY2sW6U8s-AUeMOFbIUVrPYWOt5YY0AaZYRvuO8kB-eqrtkm3x58p_X-jpiLvo5jGqaRuuai7hrZ1OqZWsASdRh8LAlsH7LVB5Kxtm3VvdfeG9T0HPbBxgF9mPqvBN9fCSam4L-ygDFnffLn95vmNsU8Bef1KoUe0n9dMX0XqH4IVK8DnQS768tG06N7wh8TfJ4ex9V7Zrc-O6t2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562837329</pqid></control><display><type>article</type><title>The protective role of PHB and its degradation products against stress situations in bacteria</title><source>Oxford Open Access Journals</source><creator>Müller-Santos, Marcelo ; Koskimäki, Janne J ; Alves, Luis Paulo Silveira ; de Souza, Emanuel Maltempi ; Jendrossek, Dieter ; Pirttilä, Anna Maria</creator><creatorcontrib>Müller-Santos, Marcelo ; Koskimäki, Janne J ; Alves, Luis Paulo Silveira ; de Souza, Emanuel Maltempi ; Jendrossek, Dieter ; Pirttilä, Anna Maria</creatorcontrib><description>ABSTRACT Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented. PHB cycle as a stress reliever in bacteria.</description><identifier>ISSN: 1574-6976</identifier><identifier>ISSN: 0168-6445</identifier><identifier>EISSN: 1574-6976</identifier><identifier>DOI: 10.1093/femsre/fuaa058</identifier><identifier>PMID: 33118006</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aldehydes - chemistry ; Aldehydes - metabolism ; Archaea ; Availability ; Bacteria ; Bacteria - metabolism ; Biodegradation ; Biopolymers ; Carbon ; Carbon sequestration ; Carbon sources ; Cellular stress response ; Degradation products ; Drug resistance in microorganisms ; Environmental monitoring ; Heat shock ; Nutrient availability ; Oligomers ; Oxidative stress ; Physiological aspects ; Polyhydroxyalkanoates ; Polyhydroxybutyrate ; Polyhydroxybutyric acid ; Protein interaction ; Reactive oxygen species ; Stress, Physiological - physiology</subject><ispartof>FEMS microbiology reviews, 2021-05, Vol.45 (3), p.1</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of FEMS. 2021</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of FEMS.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</citedby><cites>FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsre/fuaa058$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33118006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller-Santos, Marcelo</creatorcontrib><creatorcontrib>Koskimäki, Janne J</creatorcontrib><creatorcontrib>Alves, Luis Paulo Silveira</creatorcontrib><creatorcontrib>de Souza, Emanuel Maltempi</creatorcontrib><creatorcontrib>Jendrossek, Dieter</creatorcontrib><creatorcontrib>Pirttilä, Anna Maria</creatorcontrib><title>The protective role of PHB and its degradation products against stress situations in bacteria</title><title>FEMS microbiology reviews</title><addtitle>FEMS Microbiol Rev</addtitle><description>ABSTRACT Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented. PHB cycle as a stress reliever in bacteria.</description><subject>Aldehydes - chemistry</subject><subject>Aldehydes - metabolism</subject><subject>Archaea</subject><subject>Availability</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation</subject><subject>Biopolymers</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Carbon sources</subject><subject>Cellular stress response</subject><subject>Degradation products</subject><subject>Drug resistance in microorganisms</subject><subject>Environmental monitoring</subject><subject>Heat shock</subject><subject>Nutrient availability</subject><subject>Oligomers</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxybutyrate</subject><subject>Polyhydroxybutyric acid</subject><subject>Protein interaction</subject><subject>Reactive oxygen species</subject><subject>Stress, Physiological - physiology</subject><issn>1574-6976</issn><issn>0168-6445</issn><issn>1574-6976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUlrHDEQhUVIiLdcczSCnHIYW71Iah2dIV7AEJPYRyNKUmksM92aSGqT_Hu37fEGBqNDieJ7r6p4hHyt2F7FVLPvsc8J9_0IwHj3gWxWXLYzoaT4-OK_QbZyvmaMccX5Z7LRNFXVMSY2yeX5FdJVigVtCTdIU1wijZ6eHf-gMDgaSqYOFwkclBCHO9SNdmrCAsKQC80lYc40hzLeE5mGgRqwBVOAHfLJwzLjl3XdJheHP8_nx7PTX0cn84PTmeWiLbMObWck89JZxY2sW6U8s-AUeMOFbIUVrPYWOt5YY0AaZYRvuO8kB-eqrtkm3x58p_X-jpiLvo5jGqaRuuai7hrZ1OqZWsASdRh8LAlsH7LVB5Kxtm3VvdfeG9T0HPbBxgF9mPqvBN9fCSam4L-ygDFnffLn95vmNsU8Bef1KoUe0n9dMX0XqH4IVK8DnQS768tG06N7wh8TfJ4ex9V7Zrc-O6t2</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Müller-Santos, Marcelo</creator><creator>Koskimäki, Janne J</creator><creator>Alves, Luis Paulo Silveira</creator><creator>de Souza, Emanuel Maltempi</creator><creator>Jendrossek, Dieter</creator><creator>Pirttilä, Anna Maria</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope></search><sort><creationdate>20210501</creationdate><title>The protective role of PHB and its degradation products against stress situations in bacteria</title><author>Müller-Santos, Marcelo ; Koskimäki, Janne J ; Alves, Luis Paulo Silveira ; de Souza, Emanuel Maltempi ; Jendrossek, Dieter ; Pirttilä, Anna Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aldehydes - chemistry</topic><topic>Aldehydes - metabolism</topic><topic>Archaea</topic><topic>Availability</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation</topic><topic>Biopolymers</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Carbon sources</topic><topic>Cellular stress response</topic><topic>Degradation products</topic><topic>Drug resistance in microorganisms</topic><topic>Environmental monitoring</topic><topic>Heat shock</topic><topic>Nutrient availability</topic><topic>Oligomers</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxybutyrate</topic><topic>Polyhydroxybutyric acid</topic><topic>Protein interaction</topic><topic>Reactive oxygen species</topic><topic>Stress, Physiological - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller-Santos, Marcelo</creatorcontrib><creatorcontrib>Koskimäki, Janne J</creatorcontrib><creatorcontrib>Alves, Luis Paulo Silveira</creatorcontrib><creatorcontrib>de Souza, Emanuel Maltempi</creatorcontrib><creatorcontrib>Jendrossek, Dieter</creatorcontrib><creatorcontrib>Pirttilä, Anna Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>FEMS microbiology reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Müller-Santos, Marcelo</au><au>Koskimäki, Janne J</au><au>Alves, Luis Paulo Silveira</au><au>de Souza, Emanuel Maltempi</au><au>Jendrossek, Dieter</au><au>Pirttilä, Anna Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The protective role of PHB and its degradation products against stress situations in bacteria</atitle><jtitle>FEMS microbiology reviews</jtitle><addtitle>FEMS Microbiol Rev</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>45</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>1574-6976</issn><issn>0168-6445</issn><eissn>1574-6976</eissn><abstract>ABSTRACT Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented. PHB cycle as a stress reliever in bacteria.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33118006</pmid><doi>10.1093/femsre/fuaa058</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1574-6976
ispartof FEMS microbiology reviews, 2021-05, Vol.45 (3), p.1
issn 1574-6976
0168-6445
1574-6976
language eng
recordid cdi_proquest_journals_2562837329
source Oxford Open Access Journals
subjects Aldehydes - chemistry
Aldehydes - metabolism
Archaea
Availability
Bacteria
Bacteria - metabolism
Biodegradation
Biopolymers
Carbon
Carbon sequestration
Carbon sources
Cellular stress response
Degradation products
Drug resistance in microorganisms
Environmental monitoring
Heat shock
Nutrient availability
Oligomers
Oxidative stress
Physiological aspects
Polyhydroxyalkanoates
Polyhydroxybutyrate
Polyhydroxybutyric acid
Protein interaction
Reactive oxygen species
Stress, Physiological - physiology
title The protective role of PHB and its degradation products against stress situations in bacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20protective%20role%20of%20PHB%20and%20its%20degradation%20products%20against%20stress%20situations%20in%20bacteria&rft.jtitle=FEMS%20microbiology%20reviews&rft.au=M%C3%BCller-Santos,%20Marcelo&rft.date=2021-05-01&rft.volume=45&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=1574-6976&rft.eissn=1574-6976&rft_id=info:doi/10.1093/femsre/fuaa058&rft_dat=%3Cgale_TOX%3EA700444918%3C/gale_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562837329&rft_id=info:pmid/33118006&rft_galeid=A700444918&rft_oup_id=10.1093/femsre/fuaa058&rfr_iscdi=true