Loading…
The protective role of PHB and its degradation products against stress situations in bacteria
ABSTRACT Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the mo...
Saved in:
Published in: | FEMS microbiology reviews 2021-05, Vol.45 (3), p.1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183 |
---|---|
cites | cdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183 |
container_end_page | |
container_issue | 3 |
container_start_page | 1 |
container_title | FEMS microbiology reviews |
container_volume | 45 |
creator | Müller-Santos, Marcelo Koskimäki, Janne J Alves, Luis Paulo Silveira de Souza, Emanuel Maltempi Jendrossek, Dieter Pirttilä, Anna Maria |
description | ABSTRACT
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
PHB cycle as a stress reliever in bacteria. |
doi_str_mv | 10.1093/femsre/fuaa058 |
format | article |
fullrecord | <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_journals_2562837329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A700444918</galeid><oup_id>10.1093/femsre/fuaa058</oup_id><sourcerecordid>A700444918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</originalsourceid><addsrcrecordid>eNqFkUlrHDEQhUVIiLdcczSCnHIYW71Iah2dIV7AEJPYRyNKUmksM92aSGqT_Hu37fEGBqNDieJ7r6p4hHyt2F7FVLPvsc8J9_0IwHj3gWxWXLYzoaT4-OK_QbZyvmaMccX5Z7LRNFXVMSY2yeX5FdJVigVtCTdIU1wijZ6eHf-gMDgaSqYOFwkclBCHO9SNdmrCAsKQC80lYc40hzLeE5mGgRqwBVOAHfLJwzLjl3XdJheHP8_nx7PTX0cn84PTmeWiLbMObWck89JZxY2sW6U8s-AUeMOFbIUVrPYWOt5YY0AaZYRvuO8kB-eqrtkm3x58p_X-jpiLvo5jGqaRuuai7hrZ1OqZWsASdRh8LAlsH7LVB5Kxtm3VvdfeG9T0HPbBxgF9mPqvBN9fCSam4L-ygDFnffLn95vmNsU8Bef1KoUe0n9dMX0XqH4IVK8DnQS768tG06N7wh8TfJ4ex9V7Zrc-O6t2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562837329</pqid></control><display><type>article</type><title>The protective role of PHB and its degradation products against stress situations in bacteria</title><source>Oxford Open Access Journals</source><creator>Müller-Santos, Marcelo ; Koskimäki, Janne J ; Alves, Luis Paulo Silveira ; de Souza, Emanuel Maltempi ; Jendrossek, Dieter ; Pirttilä, Anna Maria</creator><creatorcontrib>Müller-Santos, Marcelo ; Koskimäki, Janne J ; Alves, Luis Paulo Silveira ; de Souza, Emanuel Maltempi ; Jendrossek, Dieter ; Pirttilä, Anna Maria</creatorcontrib><description>ABSTRACT
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
PHB cycle as a stress reliever in bacteria.</description><identifier>ISSN: 1574-6976</identifier><identifier>ISSN: 0168-6445</identifier><identifier>EISSN: 1574-6976</identifier><identifier>DOI: 10.1093/femsre/fuaa058</identifier><identifier>PMID: 33118006</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Aldehydes - chemistry ; Aldehydes - metabolism ; Archaea ; Availability ; Bacteria ; Bacteria - metabolism ; Biodegradation ; Biopolymers ; Carbon ; Carbon sequestration ; Carbon sources ; Cellular stress response ; Degradation products ; Drug resistance in microorganisms ; Environmental monitoring ; Heat shock ; Nutrient availability ; Oligomers ; Oxidative stress ; Physiological aspects ; Polyhydroxyalkanoates ; Polyhydroxybutyrate ; Polyhydroxybutyric acid ; Protein interaction ; Reactive oxygen species ; Stress, Physiological - physiology</subject><ispartof>FEMS microbiology reviews, 2021-05, Vol.45 (3), p.1</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of FEMS. 2021</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of FEMS.</rights><rights>COPYRIGHT 2021 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</citedby><cites>FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsre/fuaa058$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33118006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Müller-Santos, Marcelo</creatorcontrib><creatorcontrib>Koskimäki, Janne J</creatorcontrib><creatorcontrib>Alves, Luis Paulo Silveira</creatorcontrib><creatorcontrib>de Souza, Emanuel Maltempi</creatorcontrib><creatorcontrib>Jendrossek, Dieter</creatorcontrib><creatorcontrib>Pirttilä, Anna Maria</creatorcontrib><title>The protective role of PHB and its degradation products against stress situations in bacteria</title><title>FEMS microbiology reviews</title><addtitle>FEMS Microbiol Rev</addtitle><description>ABSTRACT
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
PHB cycle as a stress reliever in bacteria.</description><subject>Aldehydes - chemistry</subject><subject>Aldehydes - metabolism</subject><subject>Archaea</subject><subject>Availability</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation</subject><subject>Biopolymers</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Carbon sources</subject><subject>Cellular stress response</subject><subject>Degradation products</subject><subject>Drug resistance in microorganisms</subject><subject>Environmental monitoring</subject><subject>Heat shock</subject><subject>Nutrient availability</subject><subject>Oligomers</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Polyhydroxyalkanoates</subject><subject>Polyhydroxybutyrate</subject><subject>Polyhydroxybutyric acid</subject><subject>Protein interaction</subject><subject>Reactive oxygen species</subject><subject>Stress, Physiological - physiology</subject><issn>1574-6976</issn><issn>0168-6445</issn><issn>1574-6976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUlrHDEQhUVIiLdcczSCnHIYW71Iah2dIV7AEJPYRyNKUmksM92aSGqT_Hu37fEGBqNDieJ7r6p4hHyt2F7FVLPvsc8J9_0IwHj3gWxWXLYzoaT4-OK_QbZyvmaMccX5Z7LRNFXVMSY2yeX5FdJVigVtCTdIU1wijZ6eHf-gMDgaSqYOFwkclBCHO9SNdmrCAsKQC80lYc40hzLeE5mGgRqwBVOAHfLJwzLjl3XdJheHP8_nx7PTX0cn84PTmeWiLbMObWck89JZxY2sW6U8s-AUeMOFbIUVrPYWOt5YY0AaZYRvuO8kB-eqrtkm3x58p_X-jpiLvo5jGqaRuuai7hrZ1OqZWsASdRh8LAlsH7LVB5Kxtm3VvdfeG9T0HPbBxgF9mPqvBN9fCSam4L-ygDFnffLn95vmNsU8Bef1KoUe0n9dMX0XqH4IVK8DnQS768tG06N7wh8TfJ4ex9V7Zrc-O6t2</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Müller-Santos, Marcelo</creator><creator>Koskimäki, Janne J</creator><creator>Alves, Luis Paulo Silveira</creator><creator>de Souza, Emanuel Maltempi</creator><creator>Jendrossek, Dieter</creator><creator>Pirttilä, Anna Maria</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope></search><sort><creationdate>20210501</creationdate><title>The protective role of PHB and its degradation products against stress situations in bacteria</title><author>Müller-Santos, Marcelo ; Koskimäki, Janne J ; Alves, Luis Paulo Silveira ; de Souza, Emanuel Maltempi ; Jendrossek, Dieter ; Pirttilä, Anna Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aldehydes - chemistry</topic><topic>Aldehydes - metabolism</topic><topic>Archaea</topic><topic>Availability</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation</topic><topic>Biopolymers</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Carbon sources</topic><topic>Cellular stress response</topic><topic>Degradation products</topic><topic>Drug resistance in microorganisms</topic><topic>Environmental monitoring</topic><topic>Heat shock</topic><topic>Nutrient availability</topic><topic>Oligomers</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Polyhydroxyalkanoates</topic><topic>Polyhydroxybutyrate</topic><topic>Polyhydroxybutyric acid</topic><topic>Protein interaction</topic><topic>Reactive oxygen species</topic><topic>Stress, Physiological - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller-Santos, Marcelo</creatorcontrib><creatorcontrib>Koskimäki, Janne J</creatorcontrib><creatorcontrib>Alves, Luis Paulo Silveira</creatorcontrib><creatorcontrib>de Souza, Emanuel Maltempi</creatorcontrib><creatorcontrib>Jendrossek, Dieter</creatorcontrib><creatorcontrib>Pirttilä, Anna Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><jtitle>FEMS microbiology reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Müller-Santos, Marcelo</au><au>Koskimäki, Janne J</au><au>Alves, Luis Paulo Silveira</au><au>de Souza, Emanuel Maltempi</au><au>Jendrossek, Dieter</au><au>Pirttilä, Anna Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The protective role of PHB and its degradation products against stress situations in bacteria</atitle><jtitle>FEMS microbiology reviews</jtitle><addtitle>FEMS Microbiol Rev</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>45</volume><issue>3</issue><spage>1</spage><pages>1-</pages><issn>1574-6976</issn><issn>0168-6445</issn><eissn>1574-6976</eissn><abstract>ABSTRACT
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
PHB cycle as a stress reliever in bacteria.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33118006</pmid><doi>10.1093/femsre/fuaa058</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1574-6976 |
ispartof | FEMS microbiology reviews, 2021-05, Vol.45 (3), p.1 |
issn | 1574-6976 0168-6445 1574-6976 |
language | eng |
recordid | cdi_proquest_journals_2562837329 |
source | Oxford Open Access Journals |
subjects | Aldehydes - chemistry Aldehydes - metabolism Archaea Availability Bacteria Bacteria - metabolism Biodegradation Biopolymers Carbon Carbon sequestration Carbon sources Cellular stress response Degradation products Drug resistance in microorganisms Environmental monitoring Heat shock Nutrient availability Oligomers Oxidative stress Physiological aspects Polyhydroxyalkanoates Polyhydroxybutyrate Polyhydroxybutyric acid Protein interaction Reactive oxygen species Stress, Physiological - physiology |
title | The protective role of PHB and its degradation products against stress situations in bacteria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20protective%20role%20of%20PHB%20and%20its%20degradation%20products%20against%20stress%20situations%20in%20bacteria&rft.jtitle=FEMS%20microbiology%20reviews&rft.au=M%C3%BCller-Santos,%20Marcelo&rft.date=2021-05-01&rft.volume=45&rft.issue=3&rft.spage=1&rft.pages=1-&rft.issn=1574-6976&rft.eissn=1574-6976&rft_id=info:doi/10.1093/femsre/fuaa058&rft_dat=%3Cgale_TOX%3EA700444918%3C/gale_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-8ec8b70f7dc95b72499f0cad9afb56746c602fca853cbba7b9b6f35f875add183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562837329&rft_id=info:pmid/33118006&rft_galeid=A700444918&rft_oup_id=10.1093/femsre/fuaa058&rfr_iscdi=true |