Loading…
Federated Learning for Internet of Things: A Comprehensive Survey
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic a...
Saved in:
Published in: | IEEE Communications surveys and tutorials 2021-01, Vol.23 (3), p.1622-1658 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93 |
container_end_page | 1658 |
container_issue | 3 |
container_start_page | 1622 |
container_title | IEEE Communications surveys and tutorials |
container_volume | 23 |
creator | Nguyen, Dinh C. Ding, Ming Pathirana, Pubudu N. Seneviratne, Aruna Li, Jun Vincent Poor, H. |
description | The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area. |
doi_str_mv | 10.1109/COMST.2021.3075439 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2562957381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415623</ieee_id><sourcerecordid>2562957381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gF4WPCfuZ7PrLQSrhUgPjeBtycesTbFJ3E0L_fdNTRFPMwzP-w48CN1TElJK9FOyfF9lISOMhpxEUnB9gSZUSh6oKPq8_LdfoxvvN4QIJjSZoHgOFbi8hwqnkLumbr6wbR1eND24BnrcWpyth6t_xjFO2m3nYA2Nr_eAVzu3h8MturL5t4e785yij_lLlrwF6fJ1kcRpUHKl-qCUMykqYYVWESmkFZwzbpXWykqrqpxIXehSlKpQusoVJSBVUdCKaclIaTWfosext3Ptzw58bzbtzjXDS8PkbMAiruhAsZEqXeu9A2s6V29zdzCUmJMq86vKnFSZs6oh9DCGagD4C2hBh17Oj5rSZDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562957381</pqid></control><display><type>article</type><title>Federated Learning for Internet of Things: A Comprehensive Survey</title><source>IEEE Xplore (Online service)</source><creator>Nguyen, Dinh C. ; Ding, Ming ; Pathirana, Pubudu N. ; Seneviratne, Aruna ; Li, Jun ; Vincent Poor, H.</creator><creatorcontrib>Nguyen, Dinh C. ; Ding, Ming ; Pathirana, Pubudu N. ; Seneviratne, Aruna ; Li, Jun ; Vincent Poor, H.</creatorcontrib><description>The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.</description><identifier>ISSN: 1553-877X</identifier><identifier>EISSN: 1553-877X</identifier><identifier>EISSN: 2373-745X</identifier><identifier>DOI: 10.1109/COMST.2021.3075439</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Caching ; Computational modeling ; Computer architecture ; Data collection ; Data models ; Data privacy ; Data retrieval ; Federated learning ; Information sharing ; Internet of Things ; machine learning ; Medical services ; Privacy ; Training ; Unmanned aerial vehicles</subject><ispartof>IEEE Communications surveys and tutorials, 2021-01, Vol.23 (3), p.1622-1658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</citedby><cites>FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</cites><orcidid>0000-0002-6239-2922 ; 0000-0002-2062-131X ; 0000-0001-8014-7798 ; 0000-0002-8092-6756 ; 0000-0002-3690-0321 ; 0000-0001-6894-7987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415623$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nguyen, Dinh C.</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><creatorcontrib>Pathirana, Pubudu N.</creatorcontrib><creatorcontrib>Seneviratne, Aruna</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Vincent Poor, H.</creatorcontrib><title>Federated Learning for Internet of Things: A Comprehensive Survey</title><title>IEEE Communications surveys and tutorials</title><addtitle>COMST</addtitle><description>The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.</description><subject>Artificial intelligence</subject><subject>Caching</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Data collection</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Data retrieval</subject><subject>Federated learning</subject><subject>Information sharing</subject><subject>Internet of Things</subject><subject>machine learning</subject><subject>Medical services</subject><subject>Privacy</subject><subject>Training</subject><subject>Unmanned aerial vehicles</subject><issn>1553-877X</issn><issn>1553-877X</issn><issn>2373-745X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gF4WPCfuZ7PrLQSrhUgPjeBtycesTbFJ3E0L_fdNTRFPMwzP-w48CN1TElJK9FOyfF9lISOMhpxEUnB9gSZUSh6oKPq8_LdfoxvvN4QIJjSZoHgOFbi8hwqnkLumbr6wbR1eND24BnrcWpyth6t_xjFO2m3nYA2Nr_eAVzu3h8MturL5t4e785yij_lLlrwF6fJ1kcRpUHKl-qCUMykqYYVWESmkFZwzbpXWykqrqpxIXehSlKpQusoVJSBVUdCKaclIaTWfosext3Ptzw58bzbtzjXDS8PkbMAiruhAsZEqXeu9A2s6V29zdzCUmJMq86vKnFSZs6oh9DCGagD4C2hBh17Oj5rSZDs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Nguyen, Dinh C.</creator><creator>Ding, Ming</creator><creator>Pathirana, Pubudu N.</creator><creator>Seneviratne, Aruna</creator><creator>Li, Jun</creator><creator>Vincent Poor, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-8014-7798</orcidid><orcidid>https://orcid.org/0000-0002-8092-6756</orcidid><orcidid>https://orcid.org/0000-0002-3690-0321</orcidid><orcidid>https://orcid.org/0000-0001-6894-7987</orcidid></search><sort><creationdate>20210101</creationdate><title>Federated Learning for Internet of Things: A Comprehensive Survey</title><author>Nguyen, Dinh C. ; Ding, Ming ; Pathirana, Pubudu N. ; Seneviratne, Aruna ; Li, Jun ; Vincent Poor, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Caching</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Data collection</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Data retrieval</topic><topic>Federated learning</topic><topic>Information sharing</topic><topic>Internet of Things</topic><topic>machine learning</topic><topic>Medical services</topic><topic>Privacy</topic><topic>Training</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Dinh C.</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><creatorcontrib>Pathirana, Pubudu N.</creatorcontrib><creatorcontrib>Seneviratne, Aruna</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Vincent Poor, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE Communications surveys and tutorials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Dinh C.</au><au>Ding, Ming</au><au>Pathirana, Pubudu N.</au><au>Seneviratne, Aruna</au><au>Li, Jun</au><au>Vincent Poor, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning for Internet of Things: A Comprehensive Survey</atitle><jtitle>IEEE Communications surveys and tutorials</jtitle><stitle>COMST</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><spage>1622</spage><epage>1658</epage><pages>1622-1658</pages><issn>1553-877X</issn><eissn>1553-877X</eissn><eissn>2373-745X</eissn><abstract>The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/COMST.2021.3075439</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-8014-7798</orcidid><orcidid>https://orcid.org/0000-0002-8092-6756</orcidid><orcidid>https://orcid.org/0000-0002-3690-0321</orcidid><orcidid>https://orcid.org/0000-0001-6894-7987</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-877X |
ispartof | IEEE Communications surveys and tutorials, 2021-01, Vol.23 (3), p.1622-1658 |
issn | 1553-877X 1553-877X 2373-745X |
language | eng |
recordid | cdi_proquest_journals_2562957381 |
source | IEEE Xplore (Online service) |
subjects | Artificial intelligence Caching Computational modeling Computer architecture Data collection Data models Data privacy Data retrieval Federated learning Information sharing Internet of Things machine learning Medical services Privacy Training Unmanned aerial vehicles |
title | Federated Learning for Internet of Things: A Comprehensive Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20for%20Internet%20of%20Things:%20A%20Comprehensive%20Survey&rft.jtitle=IEEE%20Communications%20surveys%20and%20tutorials&rft.au=Nguyen,%20Dinh%20C.&rft.date=2021-01-01&rft.volume=23&rft.issue=3&rft.spage=1622&rft.epage=1658&rft.pages=1622-1658&rft.issn=1553-877X&rft.eissn=1553-877X&rft_id=info:doi/10.1109/COMST.2021.3075439&rft_dat=%3Cproquest_ieee_%3E2562957381%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562957381&rft_id=info:pmid/&rft_ieee_id=9415623&rfr_iscdi=true |