Loading…

Federated Learning for Internet of Things: A Comprehensive Survey

The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Communications surveys and tutorials 2021-01, Vol.23 (3), p.1622-1658
Main Authors: Nguyen, Dinh C., Ding, Ming, Pathirana, Pubudu N., Seneviratne, Aruna, Li, Jun, Vincent Poor, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93
cites cdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93
container_end_page 1658
container_issue 3
container_start_page 1622
container_title IEEE Communications surveys and tutorials
container_volume 23
creator Nguyen, Dinh C.
Ding, Ming
Pathirana, Pubudu N.
Seneviratne, Aruna
Li, Jun
Vincent Poor, H.
description The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.
doi_str_mv 10.1109/COMST.2021.3075439
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2562957381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415623</ieee_id><sourcerecordid>2562957381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFb_gF4WPCfuZ7PrLQSrhUgPjeBtycesTbFJ3E0L_fdNTRFPMwzP-w48CN1TElJK9FOyfF9lISOMhpxEUnB9gSZUSh6oKPq8_LdfoxvvN4QIJjSZoHgOFbi8hwqnkLumbr6wbR1eND24BnrcWpyth6t_xjFO2m3nYA2Nr_eAVzu3h8MturL5t4e785yij_lLlrwF6fJ1kcRpUHKl-qCUMykqYYVWESmkFZwzbpXWykqrqpxIXehSlKpQusoVJSBVUdCKaclIaTWfosext3Ptzw58bzbtzjXDS8PkbMAiruhAsZEqXeu9A2s6V29zdzCUmJMq86vKnFSZs6oh9DCGagD4C2hBh17Oj5rSZDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562957381</pqid></control><display><type>article</type><title>Federated Learning for Internet of Things: A Comprehensive Survey</title><source>IEEE Xplore (Online service)</source><creator>Nguyen, Dinh C. ; Ding, Ming ; Pathirana, Pubudu N. ; Seneviratne, Aruna ; Li, Jun ; Vincent Poor, H.</creator><creatorcontrib>Nguyen, Dinh C. ; Ding, Ming ; Pathirana, Pubudu N. ; Seneviratne, Aruna ; Li, Jun ; Vincent Poor, H.</creatorcontrib><description>The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.</description><identifier>ISSN: 1553-877X</identifier><identifier>EISSN: 1553-877X</identifier><identifier>EISSN: 2373-745X</identifier><identifier>DOI: 10.1109/COMST.2021.3075439</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Caching ; Computational modeling ; Computer architecture ; Data collection ; Data models ; Data privacy ; Data retrieval ; Federated learning ; Information sharing ; Internet of Things ; machine learning ; Medical services ; Privacy ; Training ; Unmanned aerial vehicles</subject><ispartof>IEEE Communications surveys and tutorials, 2021-01, Vol.23 (3), p.1622-1658</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</citedby><cites>FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</cites><orcidid>0000-0002-6239-2922 ; 0000-0002-2062-131X ; 0000-0001-8014-7798 ; 0000-0002-8092-6756 ; 0000-0002-3690-0321 ; 0000-0001-6894-7987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415623$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nguyen, Dinh C.</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><creatorcontrib>Pathirana, Pubudu N.</creatorcontrib><creatorcontrib>Seneviratne, Aruna</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Vincent Poor, H.</creatorcontrib><title>Federated Learning for Internet of Things: A Comprehensive Survey</title><title>IEEE Communications surveys and tutorials</title><addtitle>COMST</addtitle><description>The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.</description><subject>Artificial intelligence</subject><subject>Caching</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Data collection</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Data retrieval</subject><subject>Federated learning</subject><subject>Information sharing</subject><subject>Internet of Things</subject><subject>machine learning</subject><subject>Medical services</subject><subject>Privacy</subject><subject>Training</subject><subject>Unmanned aerial vehicles</subject><issn>1553-877X</issn><issn>1553-877X</issn><issn>2373-745X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNkE1Lw0AQhhdRsFb_gF4WPCfuZ7PrLQSrhUgPjeBtycesTbFJ3E0L_fdNTRFPMwzP-w48CN1TElJK9FOyfF9lISOMhpxEUnB9gSZUSh6oKPq8_LdfoxvvN4QIJjSZoHgOFbi8hwqnkLumbr6wbR1eND24BnrcWpyth6t_xjFO2m3nYA2Nr_eAVzu3h8MturL5t4e785yij_lLlrwF6fJ1kcRpUHKl-qCUMykqYYVWESmkFZwzbpXWykqrqpxIXehSlKpQusoVJSBVUdCKaclIaTWfosext3Ptzw58bzbtzjXDS8PkbMAiruhAsZEqXeu9A2s6V29zdzCUmJMq86vKnFSZs6oh9DCGagD4C2hBh17Oj5rSZDs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Nguyen, Dinh C.</creator><creator>Ding, Ming</creator><creator>Pathirana, Pubudu N.</creator><creator>Seneviratne, Aruna</creator><creator>Li, Jun</creator><creator>Vincent Poor, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-8014-7798</orcidid><orcidid>https://orcid.org/0000-0002-8092-6756</orcidid><orcidid>https://orcid.org/0000-0002-3690-0321</orcidid><orcidid>https://orcid.org/0000-0001-6894-7987</orcidid></search><sort><creationdate>20210101</creationdate><title>Federated Learning for Internet of Things: A Comprehensive Survey</title><author>Nguyen, Dinh C. ; Ding, Ming ; Pathirana, Pubudu N. ; Seneviratne, Aruna ; Li, Jun ; Vincent Poor, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Caching</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Data collection</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Data retrieval</topic><topic>Federated learning</topic><topic>Information sharing</topic><topic>Internet of Things</topic><topic>machine learning</topic><topic>Medical services</topic><topic>Privacy</topic><topic>Training</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Dinh C.</creatorcontrib><creatorcontrib>Ding, Ming</creatorcontrib><creatorcontrib>Pathirana, Pubudu N.</creatorcontrib><creatorcontrib>Seneviratne, Aruna</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Vincent Poor, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><jtitle>IEEE Communications surveys and tutorials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Dinh C.</au><au>Ding, Ming</au><au>Pathirana, Pubudu N.</au><au>Seneviratne, Aruna</au><au>Li, Jun</au><au>Vincent Poor, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Federated Learning for Internet of Things: A Comprehensive Survey</atitle><jtitle>IEEE Communications surveys and tutorials</jtitle><stitle>COMST</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>3</issue><spage>1622</spage><epage>1658</epage><pages>1622-1658</pages><issn>1553-877X</issn><eissn>1553-877X</eissn><eissn>2373-745X</eissn><abstract>The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/COMST.2021.3075439</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-6239-2922</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><orcidid>https://orcid.org/0000-0001-8014-7798</orcidid><orcidid>https://orcid.org/0000-0002-8092-6756</orcidid><orcidid>https://orcid.org/0000-0002-3690-0321</orcidid><orcidid>https://orcid.org/0000-0001-6894-7987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-877X
ispartof IEEE Communications surveys and tutorials, 2021-01, Vol.23 (3), p.1622-1658
issn 1553-877X
1553-877X
2373-745X
language eng
recordid cdi_proquest_journals_2562957381
source IEEE Xplore (Online service)
subjects Artificial intelligence
Caching
Computational modeling
Computer architecture
Data collection
Data models
Data privacy
Data retrieval
Federated learning
Information sharing
Internet of Things
machine learning
Medical services
Privacy
Training
Unmanned aerial vehicles
title Federated Learning for Internet of Things: A Comprehensive Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Federated%20Learning%20for%20Internet%20of%20Things:%20A%20Comprehensive%20Survey&rft.jtitle=IEEE%20Communications%20surveys%20and%20tutorials&rft.au=Nguyen,%20Dinh%20C.&rft.date=2021-01-01&rft.volume=23&rft.issue=3&rft.spage=1622&rft.epage=1658&rft.pages=1622-1658&rft.issn=1553-877X&rft.eissn=1553-877X&rft_id=info:doi/10.1109/COMST.2021.3075439&rft_dat=%3Cproquest_ieee_%3E2562957381%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-c5654d4f49870b5f43323f8998f5f8da059b9c4c8b89da810e58bb1d29520cf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2562957381&rft_id=info:pmid/&rft_ieee_id=9415623&rfr_iscdi=true