Loading…
Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material
First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe 1− n N n P 1− m M m O 4 (N, M = Si or S) electrode materials. It is found that the LiFeP 7/8 Si 1/8 O 4 system has the mo...
Saved in:
Published in: | Rare metals 2021-12, Vol.40 (12), p.3512-3519 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03 |
container_end_page | 3519 |
container_issue | 12 |
container_start_page | 3512 |
container_title | Rare metals |
container_volume | 40 |
creator | Cui, Zhi-Hong Lu, Xue-Feng Luo, Jian-Hua Guo, Xin Xue, Hong-Tao Tang, Fu-Ling |
description | First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe
1−
n
N
n
P
1−
m
M
m
O
4
(N, M = Si or S) electrode materials. It is found that the LiFeP
7/8
Si
1/8
O
4
system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe
7/8
S
1/8
PO
4
system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP
7/8
S
1/8
O
4
system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP
7/8
Si
1/8
O
4
system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe
7/8
S
1/8
PO
4
and LiFeP
7/8
S
1/8
O
4
. Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V.
Graphic abstract |
doi_str_mv | 10.1007/s12598-020-01689-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563188125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563188125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaW2BIYJ3HsLFHFn1QoErC2HNsprvJTbKdSb8CaI3ISXILEjtWMRu-9mfkQOiVwQQDYpScpLXkCKSRACl4mbA9NCC9Ywgin-7EHIAnQlByiI-9XAHleFDBB3XNwgwqDM9gHWdnGhu05No1RwfWdVXjt-rVxYYtlp_Gmb4Jcmt2wto3BfY3n9saQr4_P7rF72tX2oV3kuG_sxnYGKxneem1wK4NxVjbH6KCWjTcnv3WKXm-uX2Z3yXxxez-7micqIzQkOaesMlRqkkoCUhd5XiqtQUuo459lppiuFVCa1yXhTHJeVpWiNa8qoExDNkVnY2689H0wPohVP7gurhQpLTLCeQQWVemoUq733plarJ1tpdsKAmLHVYxcReQqfrgKFk3ZaPJR3C2N-4v-x_UN8k9-VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563188125</pqid></control><display><type>article</type><title>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</title><source>Springer Link</source><creator>Cui, Zhi-Hong ; Lu, Xue-Feng ; Luo, Jian-Hua ; Guo, Xin ; Xue, Hong-Tao ; Tang, Fu-Ling</creator><creatorcontrib>Cui, Zhi-Hong ; Lu, Xue-Feng ; Luo, Jian-Hua ; Guo, Xin ; Xue, Hong-Tao ; Tang, Fu-Ling</creatorcontrib><description>First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe
1−
n
N
n
P
1−
m
M
m
O
4
(N, M = Si or S) electrode materials. It is found that the LiFeP
7/8
Si
1/8
O
4
system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe
7/8
S
1/8
PO
4
system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP
7/8
S
1/8
O
4
system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP
7/8
Si
1/8
O
4
system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe
7/8
S
1/8
PO
4
and LiFeP
7/8
S
1/8
O
4
. Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V.
Graphic abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-020-01689-7</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Charge density ; Chemistry and Materials Science ; Density functional theory ; Doping ; Electric potential ; Electrode materials ; Energy ; Energy gap ; First principles ; Intercalation ; Lithium ; Materials Engineering ; Materials Science ; Metallic Materials ; N-type semiconductors ; Nanoscale Science and Technology ; Olivine ; Original Article ; P-type semiconductors ; Physical Chemistry ; Structural stability ; Voltage</subject><ispartof>Rare metals, 2021-12, Vol.40 (12), p.3512-3519</ispartof><rights>Youke Publishing Co., Ltd. 2021</rights><rights>Youke Publishing Co., Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</citedby><cites>FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</cites><orcidid>0000-0003-1066-5180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cui, Zhi-Hong</creatorcontrib><creatorcontrib>Lu, Xue-Feng</creatorcontrib><creatorcontrib>Luo, Jian-Hua</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Xue, Hong-Tao</creatorcontrib><creatorcontrib>Tang, Fu-Ling</creatorcontrib><title>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe
1−
n
N
n
P
1−
m
M
m
O
4
(N, M = Si or S) electrode materials. It is found that the LiFeP
7/8
Si
1/8
O
4
system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe
7/8
S
1/8
PO
4
system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP
7/8
S
1/8
O
4
system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP
7/8
Si
1/8
O
4
system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe
7/8
S
1/8
PO
4
and LiFeP
7/8
S
1/8
O
4
. Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V.
Graphic abstract</description><subject>Biomaterials</subject><subject>Charge density</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electric potential</subject><subject>Electrode materials</subject><subject>Energy</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Intercalation</subject><subject>Lithium</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>N-type semiconductors</subject><subject>Nanoscale Science and Technology</subject><subject>Olivine</subject><subject>Original Article</subject><subject>P-type semiconductors</subject><subject>Physical Chemistry</subject><subject>Structural stability</subject><subject>Voltage</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaW2BIYJ3HsLFHFn1QoErC2HNsprvJTbKdSb8CaI3ISXILEjtWMRu-9mfkQOiVwQQDYpScpLXkCKSRACl4mbA9NCC9Ywgin-7EHIAnQlByiI-9XAHleFDBB3XNwgwqDM9gHWdnGhu05No1RwfWdVXjt-rVxYYtlp_Gmb4Jcmt2wto3BfY3n9saQr4_P7rF72tX2oV3kuG_sxnYGKxneem1wK4NxVjbH6KCWjTcnv3WKXm-uX2Z3yXxxez-7micqIzQkOaesMlRqkkoCUhd5XiqtQUuo459lppiuFVCa1yXhTHJeVpWiNa8qoExDNkVnY2689H0wPohVP7gurhQpLTLCeQQWVemoUq733plarJ1tpdsKAmLHVYxcReQqfrgKFk3ZaPJR3C2N-4v-x_UN8k9-VA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cui, Zhi-Hong</creator><creator>Lu, Xue-Feng</creator><creator>Luo, Jian-Hua</creator><creator>Guo, Xin</creator><creator>Xue, Hong-Tao</creator><creator>Tang, Fu-Ling</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1066-5180</orcidid></search><sort><creationdate>20211201</creationdate><title>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</title><author>Cui, Zhi-Hong ; Lu, Xue-Feng ; Luo, Jian-Hua ; Guo, Xin ; Xue, Hong-Tao ; Tang, Fu-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomaterials</topic><topic>Charge density</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electric potential</topic><topic>Electrode materials</topic><topic>Energy</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Intercalation</topic><topic>Lithium</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>N-type semiconductors</topic><topic>Nanoscale Science and Technology</topic><topic>Olivine</topic><topic>Original Article</topic><topic>P-type semiconductors</topic><topic>Physical Chemistry</topic><topic>Structural stability</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Zhi-Hong</creatorcontrib><creatorcontrib>Lu, Xue-Feng</creatorcontrib><creatorcontrib>Luo, Jian-Hua</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Xue, Hong-Tao</creatorcontrib><creatorcontrib>Tang, Fu-Ling</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Zhi-Hong</au><au>Lu, Xue-Feng</au><au>Luo, Jian-Hua</au><au>Guo, Xin</au><au>Xue, Hong-Tao</au><au>Tang, Fu-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>40</volume><issue>12</issue><spage>3512</spage><epage>3519</epage><pages>3512-3519</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe
1−
n
N
n
P
1−
m
M
m
O
4
(N, M = Si or S) electrode materials. It is found that the LiFeP
7/8
Si
1/8
O
4
system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe
7/8
S
1/8
PO
4
system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP
7/8
S
1/8
O
4
system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP
7/8
Si
1/8
O
4
system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe
7/8
S
1/8
PO
4
and LiFeP
7/8
S
1/8
O
4
. Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V.
Graphic abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-020-01689-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1066-5180</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2021-12, Vol.40 (12), p.3512-3519 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2563188125 |
source | Springer Link |
subjects | Biomaterials Charge density Chemistry and Materials Science Density functional theory Doping Electric potential Electrode materials Energy Energy gap First principles Intercalation Lithium Materials Engineering Materials Science Metallic Materials N-type semiconductors Nanoscale Science and Technology Olivine Original Article P-type semiconductors Physical Chemistry Structural stability Voltage |
title | Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20stability,%20electronic%20property%20and%20voltage%20profile%20of%20LiFe1%E2%88%92nNnP1%E2%88%92mMmO4%20olivine%20cathode%20material&rft.jtitle=Rare%20metals&rft.au=Cui,%20Zhi-Hong&rft.date=2021-12-01&rft.volume=40&rft.issue=12&rft.spage=3512&rft.epage=3519&rft.pages=3512-3519&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-020-01689-7&rft_dat=%3Cproquest_cross%3E2563188125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563188125&rft_id=info:pmid/&rfr_iscdi=true |