Loading…

Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material

First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe 1− n N n P 1− m M m O 4 (N, M = Si or S) electrode materials. It is found that the LiFeP 7/8 Si 1/8 O 4 system has the mo...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2021-12, Vol.40 (12), p.3512-3519
Main Authors: Cui, Zhi-Hong, Lu, Xue-Feng, Luo, Jian-Hua, Guo, Xin, Xue, Hong-Tao, Tang, Fu-Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03
cites cdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03
container_end_page 3519
container_issue 12
container_start_page 3512
container_title Rare metals
container_volume 40
creator Cui, Zhi-Hong
Lu, Xue-Feng
Luo, Jian-Hua
Guo, Xin
Xue, Hong-Tao
Tang, Fu-Ling
description First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe 1− n N n P 1− m M m O 4 (N, M = Si or S) electrode materials. It is found that the LiFeP 7/8 Si 1/8 O 4 system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe 7/8 S 1/8 PO 4 system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP 7/8 S 1/8 O 4 system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP 7/8 Si 1/8 O 4 system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe 7/8 S 1/8 PO 4 and LiFeP 7/8 S 1/8 O 4 . Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V. Graphic abstract
doi_str_mv 10.1007/s12598-020-01689-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563188125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563188125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaW2BIYJ3HsLFHFn1QoErC2HNsprvJTbKdSb8CaI3ISXILEjtWMRu-9mfkQOiVwQQDYpScpLXkCKSRACl4mbA9NCC9Ywgin-7EHIAnQlByiI-9XAHleFDBB3XNwgwqDM9gHWdnGhu05No1RwfWdVXjt-rVxYYtlp_Gmb4Jcmt2wto3BfY3n9saQr4_P7rF72tX2oV3kuG_sxnYGKxneem1wK4NxVjbH6KCWjTcnv3WKXm-uX2Z3yXxxez-7micqIzQkOaesMlRqkkoCUhd5XiqtQUuo459lppiuFVCa1yXhTHJeVpWiNa8qoExDNkVnY2689H0wPohVP7gurhQpLTLCeQQWVemoUq733plarJ1tpdsKAmLHVYxcReQqfrgKFk3ZaPJR3C2N-4v-x_UN8k9-VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563188125</pqid></control><display><type>article</type><title>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</title><source>Springer Link</source><creator>Cui, Zhi-Hong ; Lu, Xue-Feng ; Luo, Jian-Hua ; Guo, Xin ; Xue, Hong-Tao ; Tang, Fu-Ling</creator><creatorcontrib>Cui, Zhi-Hong ; Lu, Xue-Feng ; Luo, Jian-Hua ; Guo, Xin ; Xue, Hong-Tao ; Tang, Fu-Ling</creatorcontrib><description>First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe 1− n N n P 1− m M m O 4 (N, M = Si or S) electrode materials. It is found that the LiFeP 7/8 Si 1/8 O 4 system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe 7/8 S 1/8 PO 4 system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP 7/8 S 1/8 O 4 system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP 7/8 Si 1/8 O 4 system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe 7/8 S 1/8 PO 4 and LiFeP 7/8 S 1/8 O 4 . Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V. Graphic abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-020-01689-7</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Charge density ; Chemistry and Materials Science ; Density functional theory ; Doping ; Electric potential ; Electrode materials ; Energy ; Energy gap ; First principles ; Intercalation ; Lithium ; Materials Engineering ; Materials Science ; Metallic Materials ; N-type semiconductors ; Nanoscale Science and Technology ; Olivine ; Original Article ; P-type semiconductors ; Physical Chemistry ; Structural stability ; Voltage</subject><ispartof>Rare metals, 2021-12, Vol.40 (12), p.3512-3519</ispartof><rights>Youke Publishing Co., Ltd. 2021</rights><rights>Youke Publishing Co., Ltd. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</citedby><cites>FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</cites><orcidid>0000-0003-1066-5180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cui, Zhi-Hong</creatorcontrib><creatorcontrib>Lu, Xue-Feng</creatorcontrib><creatorcontrib>Luo, Jian-Hua</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Xue, Hong-Tao</creatorcontrib><creatorcontrib>Tang, Fu-Ling</creatorcontrib><title>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe 1− n N n P 1− m M m O 4 (N, M = Si or S) electrode materials. It is found that the LiFeP 7/8 Si 1/8 O 4 system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe 7/8 S 1/8 PO 4 system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP 7/8 S 1/8 O 4 system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP 7/8 Si 1/8 O 4 system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe 7/8 S 1/8 PO 4 and LiFeP 7/8 S 1/8 O 4 . Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V. Graphic abstract</description><subject>Biomaterials</subject><subject>Charge density</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Electric potential</subject><subject>Electrode materials</subject><subject>Energy</subject><subject>Energy gap</subject><subject>First principles</subject><subject>Intercalation</subject><subject>Lithium</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>N-type semiconductors</subject><subject>Nanoscale Science and Technology</subject><subject>Olivine</subject><subject>Original Article</subject><subject>P-type semiconductors</subject><subject>Physical Chemistry</subject><subject>Structural stability</subject><subject>Voltage</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaW2BIYJ3HsLFHFn1QoErC2HNsprvJTbKdSb8CaI3ISXILEjtWMRu-9mfkQOiVwQQDYpScpLXkCKSRACl4mbA9NCC9Ywgin-7EHIAnQlByiI-9XAHleFDBB3XNwgwqDM9gHWdnGhu05No1RwfWdVXjt-rVxYYtlp_Gmb4Jcmt2wto3BfY3n9saQr4_P7rF72tX2oV3kuG_sxnYGKxneem1wK4NxVjbH6KCWjTcnv3WKXm-uX2Z3yXxxez-7micqIzQkOaesMlRqkkoCUhd5XiqtQUuo459lppiuFVCa1yXhTHJeVpWiNa8qoExDNkVnY2689H0wPohVP7gurhQpLTLCeQQWVemoUq733plarJ1tpdsKAmLHVYxcReQqfrgKFk3ZaPJR3C2N-4v-x_UN8k9-VA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cui, Zhi-Hong</creator><creator>Lu, Xue-Feng</creator><creator>Luo, Jian-Hua</creator><creator>Guo, Xin</creator><creator>Xue, Hong-Tao</creator><creator>Tang, Fu-Ling</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1066-5180</orcidid></search><sort><creationdate>20211201</creationdate><title>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</title><author>Cui, Zhi-Hong ; Lu, Xue-Feng ; Luo, Jian-Hua ; Guo, Xin ; Xue, Hong-Tao ; Tang, Fu-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomaterials</topic><topic>Charge density</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Electric potential</topic><topic>Electrode materials</topic><topic>Energy</topic><topic>Energy gap</topic><topic>First principles</topic><topic>Intercalation</topic><topic>Lithium</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>N-type semiconductors</topic><topic>Nanoscale Science and Technology</topic><topic>Olivine</topic><topic>Original Article</topic><topic>P-type semiconductors</topic><topic>Physical Chemistry</topic><topic>Structural stability</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Zhi-Hong</creatorcontrib><creatorcontrib>Lu, Xue-Feng</creatorcontrib><creatorcontrib>Luo, Jian-Hua</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><creatorcontrib>Xue, Hong-Tao</creatorcontrib><creatorcontrib>Tang, Fu-Ling</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Zhi-Hong</au><au>Lu, Xue-Feng</au><au>Luo, Jian-Hua</au><au>Guo, Xin</au><au>Xue, Hong-Tao</au><au>Tang, Fu-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>40</volume><issue>12</issue><spage>3512</spage><epage>3519</epage><pages>3512-3519</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>First-principles computational studies under density functional theory (DFT) framework were used to investigate the structural stability, conductivity and voltage profile of LiFe 1− n N n P 1− m M m O 4 (N, M = Si or S) electrode materials. It is found that the LiFeP 7/8 Si 1/8 O 4 system has the most stable structure. After doping, the band gap values of the systems decrease gradually, and LiFe 7/8 S 1/8 PO 4 system has a minimum band gap of 1.553 eV, attributed to the hybridization of the Fe-d and S-p orbital electrons. The LiFeP 7/8 S 1/8 O 4 system demonstrates the characteristic of n-type semiconductor, and other doping systems have the feature of p-type semiconductor. Charge density difference maps show that the covalent property of Si–O bond is enhanced in the LiFeP 7/8 Si 1/8 O 4 system. The average distance of Li and O atoms in the S doping systems increases from 0.21026 to 0.21486 and 0.21129 nm, respectively, indicating that doping broadens significantly the channel of Li ion de-intercalation in LiFe 7/8 S 1/8 PO 4 and LiFeP 7/8 S 1/8 O 4 . Additionally, the results of lithium intercalation potential imply that the voltages of the doping systems fall into the range of 2.23–2.86 V. Graphic abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-020-01689-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1066-5180</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2021-12, Vol.40 (12), p.3512-3519
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2563188125
source Springer Link
subjects Biomaterials
Charge density
Chemistry and Materials Science
Density functional theory
Doping
Electric potential
Electrode materials
Energy
Energy gap
First principles
Intercalation
Lithium
Materials Engineering
Materials Science
Metallic Materials
N-type semiconductors
Nanoscale Science and Technology
Olivine
Original Article
P-type semiconductors
Physical Chemistry
Structural stability
Voltage
title Structure stability, electronic property and voltage profile of LiFe1−nNnP1−mMmO4 olivine cathode material
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20stability,%20electronic%20property%20and%20voltage%20profile%20of%20LiFe1%E2%88%92nNnP1%E2%88%92mMmO4%20olivine%20cathode%20material&rft.jtitle=Rare%20metals&rft.au=Cui,%20Zhi-Hong&rft.date=2021-12-01&rft.volume=40&rft.issue=12&rft.spage=3512&rft.epage=3519&rft.pages=3512-3519&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-020-01689-7&rft_dat=%3Cproquest_cross%3E2563188125%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-4857be5ad12a10ad6449cdd0da0f59893c7dfc0554f9187a889bbc5f8bb057d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563188125&rft_id=info:pmid/&rfr_iscdi=true