Loading…

Influence of pregnancy and non-fasting conditions on the plasma metabolome in a rat prenatal toxicity study

The current parameters for determining maternal toxicity (e.g. clinical signs, food consumption, body weight development) lack specificity and may underestimate the extent of effects of test compounds on the dams. Previous reports have highlighted the use of plasma metabolomics for an improved and m...

Full description

Saved in:
Bibliographic Details
Published in:Archives of toxicology 2021-09, Vol.95 (9), p.2941-2959
Main Authors: Ramirez-Hincapie, S., Giri, V., Keller, J., Kamp, H., Haake, V., Richling, E., van Ravenzwaay, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The current parameters for determining maternal toxicity (e.g. clinical signs, food consumption, body weight development) lack specificity and may underestimate the extent of effects of test compounds on the dams. Previous reports have highlighted the use of plasma metabolomics for an improved and mechanism-based identification of maternal toxicity. To establish metabolite profiles of healthy pregnancies and evaluate the influence of food consumption as a confounding factor, metabolite profiling of rat plasma was performed by gas- and liquid-chromatography-tandem mass spectrometry techniques. Metabolite changes in response to pregnancy, food consumption prior to blood sampling (non-fasting) as well as the interaction of both conditions were studied. In dams, both conditions, non-fasting and pregnancy, had a marked influence on the plasma metabolome and resulted in distinct individual patterns of changed metabolites. Non-fasting was characterized by increased plasma concentrations of amino acids and diet related compounds and lower levels of ketone bodies. The metabolic profile of pregnant rats was characterized by lower amino acids and glucose levels and higher concentrations of plasma fatty acids, triglycerides and hormones, capturing the normal biochemical changes undergone during pregnancy. The establishment of metabolic profiles of pregnant non-fasted rats serves as a baseline to create metabolic fingerprints for prenatal and maternal toxicity studies.
ISSN:0340-5761
1432-0738
DOI:10.1007/s00204-021-03105-0