Loading…

Low-Cost Multisensor Integrated System for Online Walking Gait Detection

A three-dimensional motion capture system is a useful tool for analysing gait patterns during walking or exercising, and it is frequently applied in biomechanical studies. However, most of them are expensive. This study designs a low-cost gait detection system with high accuracy and reliability that...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2021, Vol.2021 (1)
Main Authors: Yan, Lingyun, Wei, Guowu, Hu, Zheqi, Xiu, Haohua, Wei, Yuyang, Ren, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A three-dimensional motion capture system is a useful tool for analysing gait patterns during walking or exercising, and it is frequently applied in biomechanical studies. However, most of them are expensive. This study designs a low-cost gait detection system with high accuracy and reliability that is an alternative method/equipment in the gait detection field to the most widely used commercial system, the virtual user concept (Vicon) system. The proposed system integrates mass-produced low-cost sensors/chips in a compact size to collect kinematic data. Furthermore, an x86 mini personal computer (PC) running at 100 Hz classifies motion data in real-time. To guarantee gait detection accuracy, the embedded gait detection algorithm adopts a multilayer perceptron (MLP) model and a rule-based calibration filter to classify kinematic data into five distinct gait events: heel-strike, foot-flat, heel-off, toe-off, and initial-swing. To evaluate performance, volunteers are requested to walk on the treadmill at a regular walking speed of 4.2 km/h while kinematic data are recorded by a low-cost system and a Vicon system simultaneously. The gait detection accuracy and relative time error are estimated by comparing the classified gait events in the study with the Vicon system as a reference. The results show that the proposed system obtains a high accuracy of 99.66% with a smaller time error (32 ms), demonstrating that it performs similarly to the Vicon system in the gait detection field.
ISSN:1687-725X
1687-7268
DOI:10.1155/2021/6378514