Loading…
Real-time Pedestrian Detection Algorithm Based on Improved YOLOv3
As a research hotspot in the field of current computer vision, pedestrian detection is widely applied to many fields, such as video surveillance and autonomous driving. However, the accuracy of pedestrian detection under video surveillance is poor, and the miss rate of small target pedestrians is hi...
Saved in:
Published in: | Journal of physics. Conference series 2021-08, Vol.2002 (1), p.12075 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a research hotspot in the field of current computer vision, pedestrian detection is widely applied to many fields, such as video surveillance and autonomous driving. However, the accuracy of pedestrian detection under video surveillance is poor, and the miss rate of small target pedestrians is high. In this paper, an improves the YOLOv3 algorithm and a YOLOv3-Multi pedestrian detection model had been proposed. First, referring to the residual structure of DarkNet, the shallow features and deep features had been up-sampled and connected to obtain a multi-scale detection layer. Then, according to different special detection categories, the spatial pyramid pool (SPP) is introduced to strengthen the detection of small targets. The experimental results show that our method improves the average accuracy by 2.54%, 6.43% and 8.99%compared with YOLOv3, SSD and YOLOv2 on the VOC dataset. |
---|---|
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2002/1/012075 |