Loading…
Artificial Neural Network for Monthly Rainfall Rate Prediction
Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2017-03, Vol.180 (1), p.12057 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-41ab1412f4f8d91613c7d93da34284dd64b731f6334cd388ca43e7ad79be83933 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-41ab1412f4f8d91613c7d93da34284dd64b731f6334cd388ca43e7ad79be83933 |
container_end_page | |
container_issue | 1 |
container_start_page | 12057 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 180 |
creator | Purnomo, H D Hartomo, K D Prasetyo, S Y J |
description | Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low. |
doi_str_mv | 10.1088/1757-899X/180/1/012057 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2563838942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563838942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-41ab1412f4f8d91613c7d93da34284dd64b731f6334cd388ca43e7ad79be83933</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRa8eFk3s0k3yUUopX5Aq-IHeAvpJsHUdbNmt0j_vakrFUHwNMPMM-_Ag9Ax4DPAnGfARizlQjxnwHEGGYYcj9gOGmwXu9uewz46aNslxgWjFA_Q-Th0zrrSqSq5MavwVboPH14T60My93X3Uq2Te-Vqq6oqNp1J7oLRruycrw_RXhy35ui7DtHTxfRxcpXObi-vJ-NZWlLMupSCWgCF3FLLtYACSMm0IFoRmnOqdUEXjIAtCKGlJpyXihLDlGZiYTgRhAzRSZ_bBP--Mm0nl34V6vhS5qOCcMIFzSNV9FQZfNsGY2UT3JsKawlYblzJjQa5USKjKwmydxUPT_tD55uf5PnD9BcmG20jmv-B_pP_CTOyd5Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563838942</pqid></control><display><type>article</type><title>Artificial Neural Network for Monthly Rainfall Rate Prediction</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Purnomo, H D ; Hartomo, K D ; Prasetyo, S Y J</creator><creatorcontrib>Purnomo, H D ; Hartomo, K D ; Prasetyo, S Y J</creatorcontrib><description>Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/180/1/012057</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Artificial neural networks ; Forecasting ; Mathematical models ; Model accuracy ; Neural networks ; Rain ; Rainfall</subject><ispartof>IOP conference series. Materials Science and Engineering, 2017-03, Vol.180 (1), p.12057</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-41ab1412f4f8d91613c7d93da34284dd64b731f6334cd388ca43e7ad79be83933</citedby><cites>FETCH-LOGICAL-c407t-41ab1412f4f8d91613c7d93da34284dd64b731f6334cd388ca43e7ad79be83933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2563838942?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Purnomo, H D</creatorcontrib><creatorcontrib>Hartomo, K D</creatorcontrib><creatorcontrib>Prasetyo, S Y J</creatorcontrib><title>Artificial Neural Network for Monthly Rainfall Rate Prediction</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Rain</subject><subject>Rainfall</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkE1LAzEQhoMoWKt_QRa8eFk3s0k3yUUopX5Aq-IHeAvpJsHUdbNmt0j_vakrFUHwNMPMM-_Ag9Ax4DPAnGfARizlQjxnwHEGGYYcj9gOGmwXu9uewz46aNslxgWjFA_Q-Th0zrrSqSq5MavwVboPH14T60My93X3Uq2Te-Vqq6oqNp1J7oLRruycrw_RXhy35ui7DtHTxfRxcpXObi-vJ-NZWlLMupSCWgCF3FLLtYACSMm0IFoRmnOqdUEXjIAtCKGlJpyXihLDlGZiYTgRhAzRSZ_bBP--Mm0nl34V6vhS5qOCcMIFzSNV9FQZfNsGY2UT3JsKawlYblzJjQa5USKjKwmydxUPT_tD55uf5PnD9BcmG20jmv-B_pP_CTOyd5Y</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Purnomo, H D</creator><creator>Hartomo, K D</creator><creator>Prasetyo, S Y J</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170301</creationdate><title>Artificial Neural Network for Monthly Rainfall Rate Prediction</title><author>Purnomo, H D ; Hartomo, K D ; Prasetyo, S Y J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-41ab1412f4f8d91613c7d93da34284dd64b731f6334cd388ca43e7ad79be83933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Rain</topic><topic>Rainfall</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purnomo, H D</creatorcontrib><creatorcontrib>Hartomo, K D</creatorcontrib><creatorcontrib>Prasetyo, S Y J</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purnomo, H D</au><au>Hartomo, K D</au><au>Prasetyo, S Y J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network for Monthly Rainfall Rate Prediction</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>180</volume><issue>1</issue><spage>12057</spage><pages>12057-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Rainfall rate forecasting plays an important role in various human activities. Rainfall forecasting is a challenging task due to the uncertainty of natural phenomena. In this paper, two neural network models are proposed for monthly rainfall rate forecasting. The performance of the proposed model is assesses based on monthly rainfall rate in Ampel, Boyolali, from 2001-2013. The experiment results show that the accuracy of the first model is much better than the accuracy of the second model. Its average accuracy is just above 98%, while the accuracy of the second model is approximately 75%. In additional, both models tend to perform better when the fluctuation of rainfall is low.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/180/1/012057</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2017-03, Vol.180 (1), p.12057 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2563838942 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Accuracy Artificial neural networks Forecasting Mathematical models Model accuracy Neural networks Rain Rainfall |
title | Artificial Neural Network for Monthly Rainfall Rate Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20for%20Monthly%20Rainfall%20Rate%20Prediction&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Purnomo,%20H%20D&rft.date=2017-03-01&rft.volume=180&rft.issue=1&rft.spage=12057&rft.pages=12057-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/180/1/012057&rft_dat=%3Cproquest_cross%3E2563838942%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-41ab1412f4f8d91613c7d93da34284dd64b731f6334cd388ca43e7ad79be83933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563838942&rft_id=info:pmid/&rfr_iscdi=true |