Loading…
On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning
Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a sig...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Austin McDannald Frontzek, Matthias Savici, Andrei T Doucet, Mathieu Rodriguez, Efrain E Meuse, Kate Opsahl-Ong, Jessica Samarov, Daniel Takeuchi, Ichiro A Gilad Kusne Ratcliff, William |
description | Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery. |
doi_str_mv | 10.48550/arxiv.2108.08918 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2563940748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563940748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-a1943b844e5683dbf4c341cd975a5ef3be81381716d8e1909ff101072e9bae253</originalsourceid><addsrcrecordid>eNotjbtOwzAYRi0kJKrSB2CzxOzga2KPIdwqVZShe-Ukv6mr1AY7qejbEwmmc4aj70PojtFCaqXog00__lxwRnVBtWH6Ci24EIxoyfkNWuV8pJTysuJKiQVqt4GMByBuuOB6GmOIpzhl3MQwpjjg6PA7TLMG_OSdS7Yb_exnb_HH4ZJ9l8k6uJhO0ONHe4HsbcD1HJ0Bb8Cm4MPnLbp2dsiw-ucS7V6ed80b2Wxf1029IdYoTSwzUrRaSlClFn3rZCck63pTKavAiRY0E5pVrOw1MEONc4wyWnEwrQWuxBLd_81-pfg9QR73xzilMD_uuSqFkbSSWvwCzLxW3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563940748</pqid></control><display><type>article</type><title>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</title><source>Publicly Available Content Database</source><creator>Austin McDannald ; Frontzek, Matthias ; Savici, Andrei T ; Doucet, Mathieu ; Rodriguez, Efrain E ; Meuse, Kate ; Opsahl-Ong, Jessica ; Samarov, Daniel ; Takeuchi, Ichiro ; A Gilad Kusne ; Ratcliff, William</creator><creatorcontrib>Austin McDannald ; Frontzek, Matthias ; Savici, Andrei T ; Doucet, Mathieu ; Rodriguez, Efrain E ; Meuse, Kate ; Opsahl-Ong, Jessica ; Samarov, Daniel ; Takeuchi, Ichiro ; A Gilad Kusne ; Ratcliff, William</creatorcontrib><description>Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2108.08918</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Active learning ; Autonomous navigation ; Bayesian analysis ; Machine learning ; Magnetic structure ; Neel temperature ; Neutron diffraction ; Neutron scattering ; Neutrons ; Statistical inference</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2563940748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Austin McDannald</creatorcontrib><creatorcontrib>Frontzek, Matthias</creatorcontrib><creatorcontrib>Savici, Andrei T</creatorcontrib><creatorcontrib>Doucet, Mathieu</creatorcontrib><creatorcontrib>Rodriguez, Efrain E</creatorcontrib><creatorcontrib>Meuse, Kate</creatorcontrib><creatorcontrib>Opsahl-Ong, Jessica</creatorcontrib><creatorcontrib>Samarov, Daniel</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>A Gilad Kusne</creatorcontrib><creatorcontrib>Ratcliff, William</creatorcontrib><title>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</title><title>arXiv.org</title><description>Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery.</description><subject>Active learning</subject><subject>Autonomous navigation</subject><subject>Bayesian analysis</subject><subject>Machine learning</subject><subject>Magnetic structure</subject><subject>Neel temperature</subject><subject>Neutron diffraction</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjbtOwzAYRi0kJKrSB2CzxOzga2KPIdwqVZShe-Ukv6mr1AY7qejbEwmmc4aj70PojtFCaqXog00__lxwRnVBtWH6Ci24EIxoyfkNWuV8pJTysuJKiQVqt4GMByBuuOB6GmOIpzhl3MQwpjjg6PA7TLMG_OSdS7Yb_exnb_HH4ZJ9l8k6uJhO0ONHe4HsbcD1HJ0Bb8Cm4MPnLbp2dsiw-ucS7V6ed80b2Wxf1029IdYoTSwzUrRaSlClFn3rZCck63pTKavAiRY0E5pVrOw1MEONc4wyWnEwrQWuxBLd_81-pfg9QR73xzilMD_uuSqFkbSSWvwCzLxW3A</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Austin McDannald</creator><creator>Frontzek, Matthias</creator><creator>Savici, Andrei T</creator><creator>Doucet, Mathieu</creator><creator>Rodriguez, Efrain E</creator><creator>Meuse, Kate</creator><creator>Opsahl-Ong, Jessica</creator><creator>Samarov, Daniel</creator><creator>Takeuchi, Ichiro</creator><creator>A Gilad Kusne</creator><creator>Ratcliff, William</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220307</creationdate><title>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</title><author>Austin McDannald ; Frontzek, Matthias ; Savici, Andrei T ; Doucet, Mathieu ; Rodriguez, Efrain E ; Meuse, Kate ; Opsahl-Ong, Jessica ; Samarov, Daniel ; Takeuchi, Ichiro ; A Gilad Kusne ; Ratcliff, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-a1943b844e5683dbf4c341cd975a5ef3be81381716d8e1909ff101072e9bae253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active learning</topic><topic>Autonomous navigation</topic><topic>Bayesian analysis</topic><topic>Machine learning</topic><topic>Magnetic structure</topic><topic>Neel temperature</topic><topic>Neutron diffraction</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Austin McDannald</creatorcontrib><creatorcontrib>Frontzek, Matthias</creatorcontrib><creatorcontrib>Savici, Andrei T</creatorcontrib><creatorcontrib>Doucet, Mathieu</creatorcontrib><creatorcontrib>Rodriguez, Efrain E</creatorcontrib><creatorcontrib>Meuse, Kate</creatorcontrib><creatorcontrib>Opsahl-Ong, Jessica</creatorcontrib><creatorcontrib>Samarov, Daniel</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>A Gilad Kusne</creatorcontrib><creatorcontrib>Ratcliff, William</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin McDannald</au><au>Frontzek, Matthias</au><au>Savici, Andrei T</au><au>Doucet, Mathieu</au><au>Rodriguez, Efrain E</au><au>Meuse, Kate</au><au>Opsahl-Ong, Jessica</au><au>Samarov, Daniel</au><au>Takeuchi, Ichiro</au><au>A Gilad Kusne</au><au>Ratcliff, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</atitle><jtitle>arXiv.org</jtitle><date>2022-03-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2108.08918</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2563940748 |
source | Publicly Available Content Database |
subjects | Active learning Autonomous navigation Bayesian analysis Machine learning Magnetic structure Neel temperature Neutron diffraction Neutron scattering Neutrons Statistical inference |
title | On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-the-fly%20Autonomous%20Control%20of%20Neutron%20Diffraction%20via%20Physics-Informed%20Bayesian%20Active%20Learning&rft.jtitle=arXiv.org&rft.au=Austin%20McDannald&rft.date=2022-03-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2108.08918&rft_dat=%3Cproquest%3E2563940748%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-a1943b844e5683dbf4c341cd975a5ef3be81381716d8e1909ff101072e9bae253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563940748&rft_id=info:pmid/&rfr_iscdi=true |