Loading…

On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning

Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a sig...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Authors: Austin McDannald, Frontzek, Matthias, Savici, Andrei T, Doucet, Mathieu, Rodriguez, Efrain E, Meuse, Kate, Opsahl-Ong, Jessica, Samarov, Daniel, Takeuchi, Ichiro, A Gilad Kusne, Ratcliff, William
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Austin McDannald
Frontzek, Matthias
Savici, Andrei T
Doucet, Mathieu
Rodriguez, Efrain E
Meuse, Kate
Opsahl-Ong, Jessica
Samarov, Daniel
Takeuchi, Ichiro
A Gilad Kusne
Ratcliff, William
description Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery.
doi_str_mv 10.48550/arxiv.2108.08918
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2563940748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2563940748</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-a1943b844e5683dbf4c341cd975a5ef3be81381716d8e1909ff101072e9bae253</originalsourceid><addsrcrecordid>eNotjbtOwzAYRi0kJKrSB2CzxOzga2KPIdwqVZShe-Ukv6mr1AY7qejbEwmmc4aj70PojtFCaqXog00__lxwRnVBtWH6Ci24EIxoyfkNWuV8pJTysuJKiQVqt4GMByBuuOB6GmOIpzhl3MQwpjjg6PA7TLMG_OSdS7Yb_exnb_HH4ZJ9l8k6uJhO0ONHe4HsbcD1HJ0Bb8Cm4MPnLbp2dsiw-ucS7V6ed80b2Wxf1029IdYoTSwzUrRaSlClFn3rZCck63pTKavAiRY0E5pVrOw1MEONc4wyWnEwrQWuxBLd_81-pfg9QR73xzilMD_uuSqFkbSSWvwCzLxW3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563940748</pqid></control><display><type>article</type><title>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</title><source>Publicly Available Content Database</source><creator>Austin McDannald ; Frontzek, Matthias ; Savici, Andrei T ; Doucet, Mathieu ; Rodriguez, Efrain E ; Meuse, Kate ; Opsahl-Ong, Jessica ; Samarov, Daniel ; Takeuchi, Ichiro ; A Gilad Kusne ; Ratcliff, William</creator><creatorcontrib>Austin McDannald ; Frontzek, Matthias ; Savici, Andrei T ; Doucet, Mathieu ; Rodriguez, Efrain E ; Meuse, Kate ; Opsahl-Ong, Jessica ; Samarov, Daniel ; Takeuchi, Ichiro ; A Gilad Kusne ; Ratcliff, William</creatorcontrib><description>Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2108.08918</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Active learning ; Autonomous navigation ; Bayesian analysis ; Machine learning ; Magnetic structure ; Neel temperature ; Neutron diffraction ; Neutron scattering ; Neutrons ; Statistical inference</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2563940748?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Austin McDannald</creatorcontrib><creatorcontrib>Frontzek, Matthias</creatorcontrib><creatorcontrib>Savici, Andrei T</creatorcontrib><creatorcontrib>Doucet, Mathieu</creatorcontrib><creatorcontrib>Rodriguez, Efrain E</creatorcontrib><creatorcontrib>Meuse, Kate</creatorcontrib><creatorcontrib>Opsahl-Ong, Jessica</creatorcontrib><creatorcontrib>Samarov, Daniel</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>A Gilad Kusne</creatorcontrib><creatorcontrib>Ratcliff, William</creatorcontrib><title>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</title><title>arXiv.org</title><description>Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery.</description><subject>Active learning</subject><subject>Autonomous navigation</subject><subject>Bayesian analysis</subject><subject>Machine learning</subject><subject>Magnetic structure</subject><subject>Neel temperature</subject><subject>Neutron diffraction</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Statistical inference</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjbtOwzAYRi0kJKrSB2CzxOzga2KPIdwqVZShe-Ukv6mr1AY7qejbEwmmc4aj70PojtFCaqXog00__lxwRnVBtWH6Ci24EIxoyfkNWuV8pJTysuJKiQVqt4GMByBuuOB6GmOIpzhl3MQwpjjg6PA7TLMG_OSdS7Yb_exnb_HH4ZJ9l8k6uJhO0ONHe4HsbcD1HJ0Bb8Cm4MPnLbp2dsiw-ucS7V6ed80b2Wxf1029IdYoTSwzUrRaSlClFn3rZCck63pTKavAiRY0E5pVrOw1MEONc4wyWnEwrQWuxBLd_81-pfg9QR73xzilMD_uuSqFkbSSWvwCzLxW3A</recordid><startdate>20220307</startdate><enddate>20220307</enddate><creator>Austin McDannald</creator><creator>Frontzek, Matthias</creator><creator>Savici, Andrei T</creator><creator>Doucet, Mathieu</creator><creator>Rodriguez, Efrain E</creator><creator>Meuse, Kate</creator><creator>Opsahl-Ong, Jessica</creator><creator>Samarov, Daniel</creator><creator>Takeuchi, Ichiro</creator><creator>A Gilad Kusne</creator><creator>Ratcliff, William</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220307</creationdate><title>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</title><author>Austin McDannald ; Frontzek, Matthias ; Savici, Andrei T ; Doucet, Mathieu ; Rodriguez, Efrain E ; Meuse, Kate ; Opsahl-Ong, Jessica ; Samarov, Daniel ; Takeuchi, Ichiro ; A Gilad Kusne ; Ratcliff, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-a1943b844e5683dbf4c341cd975a5ef3be81381716d8e1909ff101072e9bae253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active learning</topic><topic>Autonomous navigation</topic><topic>Bayesian analysis</topic><topic>Machine learning</topic><topic>Magnetic structure</topic><topic>Neel temperature</topic><topic>Neutron diffraction</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Statistical inference</topic><toplevel>online_resources</toplevel><creatorcontrib>Austin McDannald</creatorcontrib><creatorcontrib>Frontzek, Matthias</creatorcontrib><creatorcontrib>Savici, Andrei T</creatorcontrib><creatorcontrib>Doucet, Mathieu</creatorcontrib><creatorcontrib>Rodriguez, Efrain E</creatorcontrib><creatorcontrib>Meuse, Kate</creatorcontrib><creatorcontrib>Opsahl-Ong, Jessica</creatorcontrib><creatorcontrib>Samarov, Daniel</creatorcontrib><creatorcontrib>Takeuchi, Ichiro</creatorcontrib><creatorcontrib>A Gilad Kusne</creatorcontrib><creatorcontrib>Ratcliff, William</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin McDannald</au><au>Frontzek, Matthias</au><au>Savici, Andrei T</au><au>Doucet, Mathieu</au><au>Rodriguez, Efrain E</au><au>Meuse, Kate</au><au>Opsahl-Ong, Jessica</au><au>Samarov, Daniel</au><au>Takeuchi, Ichiro</au><au>A Gilad Kusne</au><au>Ratcliff, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning</atitle><jtitle>arXiv.org</jtitle><date>2022-03-07</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Neutron scattering is a unique and versatile characterization technique for probing the magnetic structure and dynamics of materials. However, instruments at neutron scattering facilities in the world is limited, and instruments at such facilities are perennially oversubscribed. We demonstrate a significant reduction in experimental time required for neutron diffraction experiments by implementation of autonomous navigation of measurement parameter space through machine learning. Prior scientific knowledge and Bayesian active learning are used to dynamically steer the sequence of measurements. We developed the autonomous neutron diffraction explorer (ANDiE) and used it to determine the magnetic order of MnO and Fe1.09Te. ANDiE can determine the Neel temperature of the materials with 5-fold enhancement in efficiency and correctly identify the transition dynamics via physics-informed Bayesian inference. ANDiE's active learning approach is broadly applicable to a variety of neutron-based experiments and can open the door for neutron scattering as a tool of accelerated materials discovery.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2108.08918</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2563940748
source Publicly Available Content Database
subjects Active learning
Autonomous navigation
Bayesian analysis
Machine learning
Magnetic structure
Neel temperature
Neutron diffraction
Neutron scattering
Neutrons
Statistical inference
title On-the-fly Autonomous Control of Neutron Diffraction via Physics-Informed Bayesian Active Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-the-fly%20Autonomous%20Control%20of%20Neutron%20Diffraction%20via%20Physics-Informed%20Bayesian%20Active%20Learning&rft.jtitle=arXiv.org&rft.au=Austin%20McDannald&rft.date=2022-03-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2108.08918&rft_dat=%3Cproquest%3E2563940748%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-a1943b844e5683dbf4c341cd975a5ef3be81381716d8e1909ff101072e9bae253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2563940748&rft_id=info:pmid/&rfr_iscdi=true