Loading…

Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg–de Vries equation in a fluid

Fluids are studied in such disciplines as atmospheric science, oceanography and astrophysics. In this paper, we investigate a (3+1)-dimensional Korteweg–de Vries equation in a fluid. Bilinear form and N -soliton solutions are obtained, where N is a positive integer. Via the N -soliton solutions, we...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2021-08, Vol.105 (3), p.2525-2538
Main Authors: Cheng, Chong-Dong, Tian, Bo, Zhang, Chen-Rong, Zhao, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-1ba019dccfd704da169784c323ea741620ac4d2c22215fce988a45d55c891e993
cites cdi_FETCH-LOGICAL-c363t-1ba019dccfd704da169784c323ea741620ac4d2c22215fce988a45d55c891e993
container_end_page 2538
container_issue 3
container_start_page 2525
container_title Nonlinear dynamics
container_volume 105
creator Cheng, Chong-Dong
Tian, Bo
Zhang, Chen-Rong
Zhao, Xin
description Fluids are studied in such disciplines as atmospheric science, oceanography and astrophysics. In this paper, we investigate a (3+1)-dimensional Korteweg–de Vries equation in a fluid. Bilinear form and N -soliton solutions are obtained, where N is a positive integer. Via the N -soliton solutions, we derive the higher-order breather solutions. We observe the interaction between the two perpendicular first-order breathers on the x - y and x - z planes and the interaction between the periodic line wave and the first-order breather on the y - z plane, where x , y and z are the independent variables in the equation. We discuss the effects of α , β , γ and δ on the amplitude of the second-order breather, where α , β , γ and δ are the constant coefficients in the equation: Amplitude of the second-order breather decreases as α increases; amplitude of the second-order breather increases as β increases; amplitude of the second-order breather keeps invariant as γ or δ increases. Via the N -soliton solutions, hybrid solutions comprising the breathers and solitons are derived. Based on the Riemann theta function, we obtain the periodic-wave solutions, and find that the periodic-wave solutions approach to the one-soliton solutions under a limiting condition.
doi_str_mv 10.1007/s11071-021-06540-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564328247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564328247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1ba019dccfd704da169784c323ea741620ac4d2c22215fce988a45d55c891e993</originalsourceid><addsrcrecordid>eNp9kMtOHDEQRa0oSBkeP5CVpWyCGEP50Q8vyYiQCCQ2CZqd5bGrB6Oe9mB3B9hlwR_wh3wJPRkkdlmUSiqdc1W6hHzmcMwBqpPMOVScgRinLBSwhw9kwotKMlHq-UcyAS0UAw3zT2Q351sAkALqCXn6FtrQoU20iWk1pTm2oY_dlC4S2v4G05TePC5S8NR2nq4xheiDY_f2D27YoQ-xyxuXWvpVHvFD5sMKuzyebUsvYurxHpcvf5890usUMFO8G-zGoqEbnaYdgt8nO41tMx687T3y-_vZr9kPdnl1_nN2esmcLGXP-MIC1965xlegvOWlrmrlpJBoK8VLAdYpL5wQgheNQ13XVhW-KFytOWot98iXbe46xbsBc29u45DGR7MRRamkqIWqRkpsKZdizgkbs05hZdOj4WA2bZtt22Zs2_xr2zyMktxKeYS7Jab36P9Yr2qUhGk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564328247</pqid></control><display><type>article</type><title>Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg–de Vries equation in a fluid</title><source>Springer Nature</source><creator>Cheng, Chong-Dong ; Tian, Bo ; Zhang, Chen-Rong ; Zhao, Xin</creator><creatorcontrib>Cheng, Chong-Dong ; Tian, Bo ; Zhang, Chen-Rong ; Zhao, Xin</creatorcontrib><description>Fluids are studied in such disciplines as atmospheric science, oceanography and astrophysics. In this paper, we investigate a (3+1)-dimensional Korteweg–de Vries equation in a fluid. Bilinear form and N -soliton solutions are obtained, where N is a positive integer. Via the N -soliton solutions, we derive the higher-order breather solutions. We observe the interaction between the two perpendicular first-order breathers on the x - y and x - z planes and the interaction between the periodic line wave and the first-order breather on the y - z plane, where x , y and z are the independent variables in the equation. We discuss the effects of α , β , γ and δ on the amplitude of the second-order breather, where α , β , γ and δ are the constant coefficients in the equation: Amplitude of the second-order breather decreases as α increases; amplitude of the second-order breather increases as β increases; amplitude of the second-order breather keeps invariant as γ or δ increases. Via the N -soliton solutions, hybrid solutions comprising the breathers and solitons are derived. Based on the Riemann theta function, we obtain the periodic-wave solutions, and find that the periodic-wave solutions approach to the one-soliton solutions under a limiting condition.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06540-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amplitudes ; Astrophysics ; Automotive Engineering ; Breathers ; Classical Mechanics ; Control ; Dynamical Systems ; Engineering ; Fluids ; Independent variables ; Korteweg-Devries equation ; Mechanical Engineering ; Oceanography ; Original Paper ; Solitary waves ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-08, Vol.105 (3), p.2525-2538</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1ba019dccfd704da169784c323ea741620ac4d2c22215fce988a45d55c891e993</citedby><cites>FETCH-LOGICAL-c363t-1ba019dccfd704da169784c323ea741620ac4d2c22215fce988a45d55c891e993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cheng, Chong-Dong</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Zhang, Chen-Rong</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><title>Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg–de Vries equation in a fluid</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Fluids are studied in such disciplines as atmospheric science, oceanography and astrophysics. In this paper, we investigate a (3+1)-dimensional Korteweg–de Vries equation in a fluid. Bilinear form and N -soliton solutions are obtained, where N is a positive integer. Via the N -soliton solutions, we derive the higher-order breather solutions. We observe the interaction between the two perpendicular first-order breathers on the x - y and x - z planes and the interaction between the periodic line wave and the first-order breather on the y - z plane, where x , y and z are the independent variables in the equation. We discuss the effects of α , β , γ and δ on the amplitude of the second-order breather, where α , β , γ and δ are the constant coefficients in the equation: Amplitude of the second-order breather decreases as α increases; amplitude of the second-order breather increases as β increases; amplitude of the second-order breather keeps invariant as γ or δ increases. Via the N -soliton solutions, hybrid solutions comprising the breathers and solitons are derived. Based on the Riemann theta function, we obtain the periodic-wave solutions, and find that the periodic-wave solutions approach to the one-soliton solutions under a limiting condition.</description><subject>Amplitudes</subject><subject>Astrophysics</subject><subject>Automotive Engineering</subject><subject>Breathers</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fluids</subject><subject>Independent variables</subject><subject>Korteweg-Devries equation</subject><subject>Mechanical Engineering</subject><subject>Oceanography</subject><subject>Original Paper</subject><subject>Solitary waves</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOHDEQRa0oSBkeP5CVpWyCGEP50Q8vyYiQCCQ2CZqd5bGrB6Oe9mB3B9hlwR_wh3wJPRkkdlmUSiqdc1W6hHzmcMwBqpPMOVScgRinLBSwhw9kwotKMlHq-UcyAS0UAw3zT2Q351sAkALqCXn6FtrQoU20iWk1pTm2oY_dlC4S2v4G05TePC5S8NR2nq4xheiDY_f2D27YoQ-xyxuXWvpVHvFD5sMKuzyebUsvYurxHpcvf5890usUMFO8G-zGoqEbnaYdgt8nO41tMx687T3y-_vZr9kPdnl1_nN2esmcLGXP-MIC1965xlegvOWlrmrlpJBoK8VLAdYpL5wQgheNQ13XVhW-KFytOWot98iXbe46xbsBc29u45DGR7MRRamkqIWqRkpsKZdizgkbs05hZdOj4WA2bZtt22Zs2_xr2zyMktxKeYS7Jab36P9Yr2qUhGk</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cheng, Chong-Dong</creator><creator>Tian, Bo</creator><creator>Zhang, Chen-Rong</creator><creator>Zhao, Xin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210801</creationdate><title>Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg–de Vries equation in a fluid</title><author>Cheng, Chong-Dong ; Tian, Bo ; Zhang, Chen-Rong ; Zhao, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1ba019dccfd704da169784c323ea741620ac4d2c22215fce988a45d55c891e993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Astrophysics</topic><topic>Automotive Engineering</topic><topic>Breathers</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fluids</topic><topic>Independent variables</topic><topic>Korteweg-Devries equation</topic><topic>Mechanical Engineering</topic><topic>Oceanography</topic><topic>Original Paper</topic><topic>Solitary waves</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chong-Dong</creatorcontrib><creatorcontrib>Tian, Bo</creatorcontrib><creatorcontrib>Zhang, Chen-Rong</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chong-Dong</au><au>Tian, Bo</au><au>Zhang, Chen-Rong</au><au>Zhao, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg–de Vries equation in a fluid</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>105</volume><issue>3</issue><spage>2525</spage><epage>2538</epage><pages>2525-2538</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Fluids are studied in such disciplines as atmospheric science, oceanography and astrophysics. In this paper, we investigate a (3+1)-dimensional Korteweg–de Vries equation in a fluid. Bilinear form and N -soliton solutions are obtained, where N is a positive integer. Via the N -soliton solutions, we derive the higher-order breather solutions. We observe the interaction between the two perpendicular first-order breathers on the x - y and x - z planes and the interaction between the periodic line wave and the first-order breather on the y - z plane, where x , y and z are the independent variables in the equation. We discuss the effects of α , β , γ and δ on the amplitude of the second-order breather, where α , β , γ and δ are the constant coefficients in the equation: Amplitude of the second-order breather decreases as α increases; amplitude of the second-order breather increases as β increases; amplitude of the second-order breather keeps invariant as γ or δ increases. Via the N -soliton solutions, hybrid solutions comprising the breathers and solitons are derived. Based on the Riemann theta function, we obtain the periodic-wave solutions, and find that the periodic-wave solutions approach to the one-soliton solutions under a limiting condition.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06540-x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-08, Vol.105 (3), p.2525-2538
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2564328247
source Springer Nature
subjects Amplitudes
Astrophysics
Automotive Engineering
Breathers
Classical Mechanics
Control
Dynamical Systems
Engineering
Fluids
Independent variables
Korteweg-Devries equation
Mechanical Engineering
Oceanography
Original Paper
Solitary waves
Vibration
title Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg–de Vries equation in a fluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20form,%20soliton,%20breather,%20hybrid%20and%20periodic-wave%20solutions%20for%20a%20(3+1)-dimensional%20Korteweg%E2%80%93de%20Vries%20equation%20in%20a%20fluid&rft.jtitle=Nonlinear%20dynamics&rft.au=Cheng,%20Chong-Dong&rft.date=2021-08-01&rft.volume=105&rft.issue=3&rft.spage=2525&rft.epage=2538&rft.pages=2525-2538&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06540-x&rft_dat=%3Cproquest_cross%3E2564328247%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-1ba019dccfd704da169784c323ea741620ac4d2c22215fce988a45d55c891e993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564328247&rft_id=info:pmid/&rfr_iscdi=true