Loading…
Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method
Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive...
Saved in:
Published in: | Advanced functional materials 2021-08, Vol.31 (35), p.n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103 |
---|---|
cites | cdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103 |
container_end_page | n/a |
container_issue | 35 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Wang, Zhenye Xu, Meichen Li, Zhilin Gao, Yerun Yang, Lvpeng Zhang, Di Shao, Ming |
description | Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs.
An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance. |
doi_str_mv | 10.1002/adfm.202103534 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564531738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564531738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</originalsourceid><addsrcrecordid>eNqFkMtPwjAcxxujiYhePTcxHod9ruxIEJQEAgmYeFu6roWS0WI7xP33jmD06On3yPeRfAC4x6iHESJPsjS7HkEEI8opuwAdnOI0oYj0L393_H4NbmLcIoSFoKwDviauDtZFq2RVNXBZB12rjSwqDedhLZ1VcOkrGeBQV1WEhW68KyFGj3Dhj7p9e_epQ7TewZExVlntVANH7pRQwqKBqyBdNK1y0dbU1q3hTNcbX96CKyOrqO9-Zhe8jUer4Wsynb9MhoNpomifsiRLsRIiYyYlmTQIcUEVZlxkumDUKMMzTihlkmTtlRaaEyO0QSmRXGaqRdEFD-fcffAfBx3rfOsPwbWVOeEp4xSLtqgLemeVCj7GoE2-D3YnQ5NjlJ_o5ie6-S_d1pCdDUdb6eYfdT54Hs_-vN-aKX5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564531738</pqid></control><display><type>article</type><title>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Zhenye ; Xu, Meichen ; Li, Zhilin ; Gao, Yerun ; Yang, Lvpeng ; Zhang, Di ; Shao, Ming</creator><creatorcontrib>Wang, Zhenye ; Xu, Meichen ; Li, Zhilin ; Gao, Yerun ; Yang, Lvpeng ; Zhang, Di ; Shao, Ming</creatorcontrib><description>Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs.
An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103534</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bending ; Efficiency ; Energy conversion efficiency ; Heterojunctions ; intrinsically stretchable electronics ; Materials science ; Mechanical properties ; organic solar cells ; Photovoltaic cells ; Polydimethylsiloxane ; Radium ; Solar cells ; Sorbitol ; Stretchability ; Tensile strain ; Transfer printing ; Transmittance</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (35), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</citedby><cites>FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</cites><orcidid>0000-0003-3709-7785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhenye</creatorcontrib><creatorcontrib>Xu, Meichen</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Gao, Yerun</creatorcontrib><creatorcontrib>Yang, Lvpeng</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><title>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</title><title>Advanced functional materials</title><description>Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs.
An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance.</description><subject>Bending</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Heterojunctions</subject><subject>intrinsically stretchable electronics</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>Polydimethylsiloxane</subject><subject>Radium</subject><subject>Solar cells</subject><subject>Sorbitol</subject><subject>Stretchability</subject><subject>Tensile strain</subject><subject>Transfer printing</subject><subject>Transmittance</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtPwjAcxxujiYhePTcxHod9ruxIEJQEAgmYeFu6roWS0WI7xP33jmD06On3yPeRfAC4x6iHESJPsjS7HkEEI8opuwAdnOI0oYj0L393_H4NbmLcIoSFoKwDviauDtZFq2RVNXBZB12rjSwqDedhLZ1VcOkrGeBQV1WEhW68KyFGj3Dhj7p9e_epQ7TewZExVlntVANH7pRQwqKBqyBdNK1y0dbU1q3hTNcbX96CKyOrqO9-Zhe8jUer4Wsynb9MhoNpomifsiRLsRIiYyYlmTQIcUEVZlxkumDUKMMzTihlkmTtlRaaEyO0QSmRXGaqRdEFD-fcffAfBx3rfOsPwbWVOeEp4xSLtqgLemeVCj7GoE2-D3YnQ5NjlJ_o5ie6-S_d1pCdDUdb6eYfdT54Hs_-vN-aKX5k</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Zhenye</creator><creator>Xu, Meichen</creator><creator>Li, Zhilin</creator><creator>Gao, Yerun</creator><creator>Yang, Lvpeng</creator><creator>Zhang, Di</creator><creator>Shao, Ming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3709-7785</orcidid></search><sort><creationdate>20210801</creationdate><title>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</title><author>Wang, Zhenye ; Xu, Meichen ; Li, Zhilin ; Gao, Yerun ; Yang, Lvpeng ; Zhang, Di ; Shao, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bending</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Heterojunctions</topic><topic>intrinsically stretchable electronics</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>Polydimethylsiloxane</topic><topic>Radium</topic><topic>Solar cells</topic><topic>Sorbitol</topic><topic>Stretchability</topic><topic>Tensile strain</topic><topic>Transfer printing</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhenye</creatorcontrib><creatorcontrib>Xu, Meichen</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Gao, Yerun</creatorcontrib><creatorcontrib>Yang, Lvpeng</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhenye</au><au>Xu, Meichen</au><au>Li, Zhilin</au><au>Gao, Yerun</au><au>Yang, Lvpeng</au><au>Zhang, Di</au><au>Shao, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>35</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs.
An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103534</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3709-7785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-08, Vol.31 (35), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2564531738 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Bending Efficiency Energy conversion efficiency Heterojunctions intrinsically stretchable electronics Materials science Mechanical properties organic solar cells Photovoltaic cells Polydimethylsiloxane Radium Solar cells Sorbitol Stretchability Tensile strain Transfer printing Transmittance |
title | Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsically%20Stretchable%20Organic%20Solar%20Cells%20beyond%2010%25%20Power%20Conversion%20Efficiency%20Enabled%20by%20Transfer%20Printing%20Method&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Zhenye&rft.date=2021-08-01&rft.volume=31&rft.issue=35&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103534&rft_dat=%3Cproquest_cross%3E2564531738%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564531738&rft_id=info:pmid/&rfr_iscdi=true |