Loading…

Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method

Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2021-08, Vol.31 (35), p.n/a
Main Authors: Wang, Zhenye, Xu, Meichen, Li, Zhilin, Gao, Yerun, Yang, Lvpeng, Zhang, Di, Shao, Ming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103
cites cdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103
container_end_page n/a
container_issue 35
container_start_page
container_title Advanced functional materials
container_volume 31
creator Wang, Zhenye
Xu, Meichen
Li, Zhilin
Gao, Yerun
Yang, Lvpeng
Zhang, Di
Shao, Ming
description Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs. An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance.
doi_str_mv 10.1002/adfm.202103534
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564531738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564531738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</originalsourceid><addsrcrecordid>eNqFkMtPwjAcxxujiYhePTcxHod9ruxIEJQEAgmYeFu6roWS0WI7xP33jmD06On3yPeRfAC4x6iHESJPsjS7HkEEI8opuwAdnOI0oYj0L393_H4NbmLcIoSFoKwDviauDtZFq2RVNXBZB12rjSwqDedhLZ1VcOkrGeBQV1WEhW68KyFGj3Dhj7p9e_epQ7TewZExVlntVANH7pRQwqKBqyBdNK1y0dbU1q3hTNcbX96CKyOrqO9-Zhe8jUer4Wsynb9MhoNpomifsiRLsRIiYyYlmTQIcUEVZlxkumDUKMMzTihlkmTtlRaaEyO0QSmRXGaqRdEFD-fcffAfBx3rfOsPwbWVOeEp4xSLtqgLemeVCj7GoE2-D3YnQ5NjlJ_o5ie6-S_d1pCdDUdb6eYfdT54Hs_-vN-aKX5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564531738</pqid></control><display><type>article</type><title>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Zhenye ; Xu, Meichen ; Li, Zhilin ; Gao, Yerun ; Yang, Lvpeng ; Zhang, Di ; Shao, Ming</creator><creatorcontrib>Wang, Zhenye ; Xu, Meichen ; Li, Zhilin ; Gao, Yerun ; Yang, Lvpeng ; Zhang, Di ; Shao, Ming</creatorcontrib><description>Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs. An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202103534</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bending ; Efficiency ; Energy conversion efficiency ; Heterojunctions ; intrinsically stretchable electronics ; Materials science ; Mechanical properties ; organic solar cells ; Photovoltaic cells ; Polydimethylsiloxane ; Radium ; Solar cells ; Sorbitol ; Stretchability ; Tensile strain ; Transfer printing ; Transmittance</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (35), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</citedby><cites>FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</cites><orcidid>0000-0003-3709-7785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Zhenye</creatorcontrib><creatorcontrib>Xu, Meichen</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Gao, Yerun</creatorcontrib><creatorcontrib>Yang, Lvpeng</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><title>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</title><title>Advanced functional materials</title><description>Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs. An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance.</description><subject>Bending</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Heterojunctions</subject><subject>intrinsically stretchable electronics</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>organic solar cells</subject><subject>Photovoltaic cells</subject><subject>Polydimethylsiloxane</subject><subject>Radium</subject><subject>Solar cells</subject><subject>Sorbitol</subject><subject>Stretchability</subject><subject>Tensile strain</subject><subject>Transfer printing</subject><subject>Transmittance</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtPwjAcxxujiYhePTcxHod9ruxIEJQEAgmYeFu6roWS0WI7xP33jmD06On3yPeRfAC4x6iHESJPsjS7HkEEI8opuwAdnOI0oYj0L393_H4NbmLcIoSFoKwDviauDtZFq2RVNXBZB12rjSwqDedhLZ1VcOkrGeBQV1WEhW68KyFGj3Dhj7p9e_epQ7TewZExVlntVANH7pRQwqKBqyBdNK1y0dbU1q3hTNcbX96CKyOrqO9-Zhe8jUer4Wsynb9MhoNpomifsiRLsRIiYyYlmTQIcUEVZlxkumDUKMMzTihlkmTtlRaaEyO0QSmRXGaqRdEFD-fcffAfBx3rfOsPwbWVOeEp4xSLtqgLemeVCj7GoE2-D3YnQ5NjlJ_o5ie6-S_d1pCdDUdb6eYfdT54Hs_-vN-aKX5k</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Wang, Zhenye</creator><creator>Xu, Meichen</creator><creator>Li, Zhilin</creator><creator>Gao, Yerun</creator><creator>Yang, Lvpeng</creator><creator>Zhang, Di</creator><creator>Shao, Ming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3709-7785</orcidid></search><sort><creationdate>20210801</creationdate><title>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</title><author>Wang, Zhenye ; Xu, Meichen ; Li, Zhilin ; Gao, Yerun ; Yang, Lvpeng ; Zhang, Di ; Shao, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bending</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Heterojunctions</topic><topic>intrinsically stretchable electronics</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>organic solar cells</topic><topic>Photovoltaic cells</topic><topic>Polydimethylsiloxane</topic><topic>Radium</topic><topic>Solar cells</topic><topic>Sorbitol</topic><topic>Stretchability</topic><topic>Tensile strain</topic><topic>Transfer printing</topic><topic>Transmittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhenye</creatorcontrib><creatorcontrib>Xu, Meichen</creatorcontrib><creatorcontrib>Li, Zhilin</creatorcontrib><creatorcontrib>Gao, Yerun</creatorcontrib><creatorcontrib>Yang, Lvpeng</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Shao, Ming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhenye</au><au>Xu, Meichen</au><au>Li, Zhilin</au><au>Gao, Yerun</au><au>Yang, Lvpeng</au><au>Zhang, Di</au><au>Shao, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>35</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Stretchable organic solar cells (OSCs) simultaneously possessing high‐efficiency and robust mechanical properties are ideal power generators for the emerging wearable and portable electronics. Herein, after incorporating a low amount of trimethylsiloxy terminated polydimethylsiloxane (PDMS) additive, the intrinsic stretchability of PTB7‐Th:IEICO‐4F bulk heterojunction (BHJ) film is greatly improved from 5% to 20% strain without sacrificing the photovoltaic performance. The intimate multi‐layers stacking of OSCs is also realized with the transfer printing method assisted by electrical adhesive “glue” D‐Sorbitol. The resultant devices with 84% electrode transmittance exhibit a remarkable power conversion efficiency (PCE) of 10.1%, which is among the highest efficiency for intrinsically stretchable OSCs to date. The stretchable OSCs also demonstrate the ultra‐flexibility, stretchability, and mechanical robustness, which keep the PCE almost unchanged at small bending radium of 2 mm for 300 times bending cycles and retain 86.7% PCE under tensile strain as large as 20% for the devices with 70% electrode transmittance. The results provide a universal method to fabricate highly efficient intrinsically stretchable OSCs. An intrinsically stretchable organic solar cell (OSC) with an efficiency of over 10% is achieved by the transfer printing method. The ductility of bulk heterojunction film is greatly improved to 20% by introducing polydimethylsiloxane additives, and intimated multilayer stacking is realized with the assistance of electrical adhesive D‐Sorbitol. The stretchable OSC exhibits ultra‐flexibility and superior stretchability without sacrificing the device performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202103534</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3709-7785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (35), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2564531738
source Wiley-Blackwell Read & Publish Collection
subjects Bending
Efficiency
Energy conversion efficiency
Heterojunctions
intrinsically stretchable electronics
Materials science
Mechanical properties
organic solar cells
Photovoltaic cells
Polydimethylsiloxane
Radium
Solar cells
Sorbitol
Stretchability
Tensile strain
Transfer printing
Transmittance
title Intrinsically Stretchable Organic Solar Cells beyond 10% Power Conversion Efficiency Enabled by Transfer Printing Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsically%20Stretchable%20Organic%20Solar%20Cells%20beyond%2010%25%20Power%20Conversion%20Efficiency%20Enabled%20by%20Transfer%20Printing%20Method&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Zhenye&rft.date=2021-08-01&rft.volume=31&rft.issue=35&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202103534&rft_dat=%3Cproquest_cross%3E2564531738%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3834-961c7794f629af00573c14579eb43fcf5952334a293fc6be52f7ef062a5a9c103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564531738&rft_id=info:pmid/&rfr_iscdi=true