Loading…

Influence of Austenitizing Heat Treatment on the Properties of the Tempered Type 410-1Mo Stainless Steel

The modified 410-1Mo stainless steel has been developed with higher tensile strength and elongation compared to the standard 410 stainless steel. This paper reports the influence of austenitizing temperature on the microstructure, hardness, impact resistance and corrosion resistance of the modified...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2017-05, Vol.202 (1), p.12085
Main Authors: Mabruri, E, Syahlan, Z A, Sahlan, Prifiharni, S, Anwar, M S, Chandra, S A, Romijarso, T B, Adjiantoro, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The modified 410-1Mo stainless steel has been developed with higher tensile strength and elongation compared to the standard 410 stainless steel. This paper reports the influence of austenitizing temperature on the microstructure, hardness, impact resistance and corrosion resistance of the modified 410-1Mo steel. The steel samples were prepared by a process sequence of induction melting, hot forging, annealing, hardening, and tempering. The microstructure of the tempered steels revealed additional phase of delta ferrite at pre-austenitizing temperatures of 950 to 1050 °C and disappeared at a temperature of 1100 °C. The steels which underwent pre-austenitizing at 1100 °C showed the largest sized lath martensite and the largest amount of retained austenite. The tempered steels maintained hardness at austenitizing temperatures of 950 °C to 1000 °C and showed an increasing hardness at austenitizing temperatures from 1000 to 1100 °C. At a range of austenitizing temperatures, it was investigated that the steels exhibited higher impact resistance at 1050 °C. The tempered steels that were pre-austenitized at 950 °C and 1100 °C showed the lowest pitting potential due to the existence of carbides and coarse-high carbon martensite, respectively.
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/202/1/012085