Loading…

A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, conce...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2016-03, Vol.117 (1), p.12052-12058
Main Authors: Košnik, N, Guštin, A Z, Mavri, B, Šarler, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3
cites cdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3
container_end_page 12058
container_issue 1
container_start_page 12052
container_title IOP conference series. Materials Science and Engineering
container_volume 117
creator Košnik, N
Guštin, A Z
Mavri, B
Šarler, B
description Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.
doi_str_mv 10.1088/1757-899X/117/1/012052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564919713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825449697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYsoOKf_ggR82UttkjZfj2PMD5j4oIL4ErI03TrSpiYdsv_ejMpEEXy6l3t_53A4SXKJ4DWCnGeIEZZyIV4zhFiGMogwJPgoGR0ex4edo9PkLIQNhJQVBRwlb1PQbG1fd-tdqHUAqi2HQ9DKGtC40lhQOQ-s-wCVN-9b0-odMNbo3rtGrVrT1xqUtY-HVK9ra4FWoa_b1XlyUikbzMXXHCcvN_Pn2V26eLy9n00Xqc4JwalQtMpRURjBGaeaKKo5xmLJaaFFIeiyqrjGZc6QgIgYBYnWBos8gjlh1OTjZDL4dt7FeKGXTUxvrFWtcdsgEcekiEaCRfTqF7pxW9_GdBITWggkGMojRQdKexeCN5XsfN0ov5MIyn3lct-m3DcrY-USyaHyKMSDsHbdt_O_oskfooen-Q9MdmWVfwJNsZAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564919713</pqid></control><display><type>article</type><title>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Košnik, N ; Guštin, A Z ; Mavri, B ; Šarler, B</creator><creatorcontrib>Košnik, N ; Guštin, A Z ; Mavri, B ; Šarler, B</creatorcontrib><description>Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/117/1/012052</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum base alloys ; Billet casting ; Casting ; Chill casting ; Coils ; Collocation methods ; Deformation ; Direct chill casting ; Electromagnetic fields ; Electromagnetic induction ; Finite element method ; Grain size ; Grain structure ; Levitation casting ; Liquid phases ; Lorentz force ; Low frequencies ; Mathematical analysis ; Mathematical models ; Meshless methods ; Phase diagrams ; Post-processing ; Process parameters ; Radial basis function ; Rheological properties ; Rheology ; Solid phases ; Thermodynamics ; Velocity coupling</subject><ispartof>IOP conference series. Materials Science and Engineering, 2016-03, Vol.117 (1), p.12052-12058</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</citedby><cites>FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2564919713?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>Košnik, N</creatorcontrib><creatorcontrib>Guštin, A Z</creatorcontrib><creatorcontrib>Mavri, B</creatorcontrib><creatorcontrib>Šarler, B</creatorcontrib><title>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.</description><subject>Aluminum base alloys</subject><subject>Billet casting</subject><subject>Casting</subject><subject>Chill casting</subject><subject>Coils</subject><subject>Collocation methods</subject><subject>Deformation</subject><subject>Direct chill casting</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic induction</subject><subject>Finite element method</subject><subject>Grain size</subject><subject>Grain structure</subject><subject>Levitation casting</subject><subject>Liquid phases</subject><subject>Lorentz force</subject><subject>Low frequencies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Phase diagrams</subject><subject>Post-processing</subject><subject>Process parameters</subject><subject>Radial basis function</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Solid phases</subject><subject>Thermodynamics</subject><subject>Velocity coupling</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkN1LwzAUxYsoOKf_ggR82UttkjZfj2PMD5j4oIL4ErI03TrSpiYdsv_ejMpEEXy6l3t_53A4SXKJ4DWCnGeIEZZyIV4zhFiGMogwJPgoGR0ex4edo9PkLIQNhJQVBRwlb1PQbG1fd-tdqHUAqi2HQ9DKGtC40lhQOQ-s-wCVN-9b0-odMNbo3rtGrVrT1xqUtY-HVK9ra4FWoa_b1XlyUikbzMXXHCcvN_Pn2V26eLy9n00Xqc4JwalQtMpRURjBGaeaKKo5xmLJaaFFIeiyqrjGZc6QgIgYBYnWBos8gjlh1OTjZDL4dt7FeKGXTUxvrFWtcdsgEcekiEaCRfTqF7pxW9_GdBITWggkGMojRQdKexeCN5XsfN0ov5MIyn3lct-m3DcrY-USyaHyKMSDsHbdt_O_oskfooen-Q9MdmWVfwJNsZAk</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Košnik, N</creator><creator>Guštin, A Z</creator><creator>Mavri, B</creator><creator>Šarler, B</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20160301</creationdate><title>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</title><author>Košnik, N ; Guštin, A Z ; Mavri, B ; Šarler, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum base alloys</topic><topic>Billet casting</topic><topic>Casting</topic><topic>Chill casting</topic><topic>Coils</topic><topic>Collocation methods</topic><topic>Deformation</topic><topic>Direct chill casting</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic induction</topic><topic>Finite element method</topic><topic>Grain size</topic><topic>Grain structure</topic><topic>Levitation casting</topic><topic>Liquid phases</topic><topic>Lorentz force</topic><topic>Low frequencies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Phase diagrams</topic><topic>Post-processing</topic><topic>Process parameters</topic><topic>Radial basis function</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Solid phases</topic><topic>Thermodynamics</topic><topic>Velocity coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Košnik, N</creatorcontrib><creatorcontrib>Guštin, A Z</creatorcontrib><creatorcontrib>Mavri, B</creatorcontrib><creatorcontrib>Šarler, B</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Košnik, N</au><au>Guštin, A Z</au><au>Mavri, B</au><au>Šarler, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>117</volume><issue>1</issue><spage>12052</spage><epage>12058</epage><pages>12052-12058</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/117/1/012052</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2016-03, Vol.117 (1), p.12052-12058
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2564919713
source Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry
subjects Aluminum base alloys
Billet casting
Casting
Chill casting
Coils
Collocation methods
Deformation
Direct chill casting
Electromagnetic fields
Electromagnetic induction
Finite element method
Grain size
Grain structure
Levitation casting
Liquid phases
Lorentz force
Low frequencies
Mathematical analysis
Mathematical models
Meshless methods
Phase diagrams
Post-processing
Process parameters
Radial basis function
Rheological properties
Rheology
Solid phases
Thermodynamics
Velocity coupling
title A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T01%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiphysics%20and%20multiscale%20model%20for%20low%20frequency%20electromagnetic%20direct-chill%20casting&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Ko%C5%A1nik,%20N&rft.date=2016-03-01&rft.volume=117&rft.issue=1&rft.spage=12052&rft.epage=12058&rft.pages=12052-12058&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/117/1/012052&rft_dat=%3Cproquest_cross%3E1825449697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564919713&rft_id=info:pmid/&rfr_iscdi=true