Loading…
A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting
Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, conce...
Saved in:
Published in: | IOP conference series. Materials Science and Engineering 2016-03, Vol.117 (1), p.12052-12058 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3 |
container_end_page | 12058 |
container_issue | 1 |
container_start_page | 12052 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 117 |
creator | Košnik, N Guštin, A Z Mavri, B Šarler, B |
description | Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology. |
doi_str_mv | 10.1088/1757-899X/117/1/012052 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2564919713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825449697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</originalsourceid><addsrcrecordid>eNqFkN1LwzAUxYsoOKf_ggR82UttkjZfj2PMD5j4oIL4ErI03TrSpiYdsv_ejMpEEXy6l3t_53A4SXKJ4DWCnGeIEZZyIV4zhFiGMogwJPgoGR0ex4edo9PkLIQNhJQVBRwlb1PQbG1fd-tdqHUAqi2HQ9DKGtC40lhQOQ-s-wCVN-9b0-odMNbo3rtGrVrT1xqUtY-HVK9ra4FWoa_b1XlyUikbzMXXHCcvN_Pn2V26eLy9n00Xqc4JwalQtMpRURjBGaeaKKo5xmLJaaFFIeiyqrjGZc6QgIgYBYnWBos8gjlh1OTjZDL4dt7FeKGXTUxvrFWtcdsgEcekiEaCRfTqF7pxW9_GdBITWggkGMojRQdKexeCN5XsfN0ov5MIyn3lct-m3DcrY-USyaHyKMSDsHbdt_O_oskfooen-Q9MdmWVfwJNsZAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564919713</pqid></control><display><type>article</type><title>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</title><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Košnik, N ; Guštin, A Z ; Mavri, B ; Šarler, B</creator><creatorcontrib>Košnik, N ; Guštin, A Z ; Mavri, B ; Šarler, B</creatorcontrib><description>Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/117/1/012052</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aluminum base alloys ; Billet casting ; Casting ; Chill casting ; Coils ; Collocation methods ; Deformation ; Direct chill casting ; Electromagnetic fields ; Electromagnetic induction ; Finite element method ; Grain size ; Grain structure ; Levitation casting ; Liquid phases ; Lorentz force ; Low frequencies ; Mathematical analysis ; Mathematical models ; Meshless methods ; Phase diagrams ; Post-processing ; Process parameters ; Radial basis function ; Rheological properties ; Rheology ; Solid phases ; Thermodynamics ; Velocity coupling</subject><ispartof>IOP conference series. Materials Science and Engineering, 2016-03, Vol.117 (1), p.12052-12058</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</citedby><cites>FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2564919713?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>Košnik, N</creatorcontrib><creatorcontrib>Guštin, A Z</creatorcontrib><creatorcontrib>Mavri, B</creatorcontrib><creatorcontrib>Šarler, B</creatorcontrib><title>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.</description><subject>Aluminum base alloys</subject><subject>Billet casting</subject><subject>Casting</subject><subject>Chill casting</subject><subject>Coils</subject><subject>Collocation methods</subject><subject>Deformation</subject><subject>Direct chill casting</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic induction</subject><subject>Finite element method</subject><subject>Grain size</subject><subject>Grain structure</subject><subject>Levitation casting</subject><subject>Liquid phases</subject><subject>Lorentz force</subject><subject>Low frequencies</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Meshless methods</subject><subject>Phase diagrams</subject><subject>Post-processing</subject><subject>Process parameters</subject><subject>Radial basis function</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Solid phases</subject><subject>Thermodynamics</subject><subject>Velocity coupling</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkN1LwzAUxYsoOKf_ggR82UttkjZfj2PMD5j4oIL4ErI03TrSpiYdsv_ejMpEEXy6l3t_53A4SXKJ4DWCnGeIEZZyIV4zhFiGMogwJPgoGR0ex4edo9PkLIQNhJQVBRwlb1PQbG1fd-tdqHUAqi2HQ9DKGtC40lhQOQ-s-wCVN-9b0-odMNbo3rtGrVrT1xqUtY-HVK9ra4FWoa_b1XlyUikbzMXXHCcvN_Pn2V26eLy9n00Xqc4JwalQtMpRURjBGaeaKKo5xmLJaaFFIeiyqrjGZc6QgIgYBYnWBos8gjlh1OTjZDL4dt7FeKGXTUxvrFWtcdsgEcekiEaCRfTqF7pxW9_GdBITWggkGMojRQdKexeCN5XsfN0ov5MIyn3lct-m3DcrY-USyaHyKMSDsHbdt_O_oskfooen-Q9MdmWVfwJNsZAk</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Košnik, N</creator><creator>Guštin, A Z</creator><creator>Mavri, B</creator><creator>Šarler, B</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20160301</creationdate><title>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</title><author>Košnik, N ; Guštin, A Z ; Mavri, B ; Šarler, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum base alloys</topic><topic>Billet casting</topic><topic>Casting</topic><topic>Chill casting</topic><topic>Coils</topic><topic>Collocation methods</topic><topic>Deformation</topic><topic>Direct chill casting</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic induction</topic><topic>Finite element method</topic><topic>Grain size</topic><topic>Grain structure</topic><topic>Levitation casting</topic><topic>Liquid phases</topic><topic>Lorentz force</topic><topic>Low frequencies</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Meshless methods</topic><topic>Phase diagrams</topic><topic>Post-processing</topic><topic>Process parameters</topic><topic>Radial basis function</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Solid phases</topic><topic>Thermodynamics</topic><topic>Velocity coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Košnik, N</creatorcontrib><creatorcontrib>Guštin, A Z</creatorcontrib><creatorcontrib>Mavri, B</creatorcontrib><creatorcontrib>Šarler, B</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Košnik, N</au><au>Guštin, A Z</au><au>Mavri, B</au><au>Šarler, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>117</volume><issue>1</issue><spage>12052</spage><epage>12058</epage><pages>12052-12058</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/117/1/012052</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2016-03, Vol.117 (1), p.12052-12058 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2564919713 |
source | Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | Aluminum base alloys Billet casting Casting Chill casting Coils Collocation methods Deformation Direct chill casting Electromagnetic fields Electromagnetic induction Finite element method Grain size Grain structure Levitation casting Liquid phases Lorentz force Low frequencies Mathematical analysis Mathematical models Meshless methods Phase diagrams Post-processing Process parameters Radial basis function Rheological properties Rheology Solid phases Thermodynamics Velocity coupling |
title | A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T01%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiphysics%20and%20multiscale%20model%20for%20low%20frequency%20electromagnetic%20direct-chill%20casting&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Ko%C5%A1nik,%20N&rft.date=2016-03-01&rft.volume=117&rft.issue=1&rft.spage=12052&rft.epage=12058&rft.pages=12052-12058&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/117/1/012052&rft_dat=%3Cproquest_cross%3E1825449697%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3552-9a6f3144e98786c5a6c8229b864c9496bff8c2d3719015ea05cce2935a63576e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2564919713&rft_id=info:pmid/&rfr_iscdi=true |