Loading…

Combined EPMA, FIB and Monte Carlo simulation: a versatile tool for quantitative analysis of multilayered structures

Electron probe microanalysis and focussed ion beam milling are combined to improve the sensitivity and applicability of depth profiling quantification. With the nanoscale milling capabilities of the ion beam, very shallow bevels are milled by using a special preparation procedure to reduce any curta...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Materials Science and Engineering 2016-02, Vol.109 (1), p.12014-12026
Main Authors: Richter, S, Pinard, P T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-56fcb2616aac33570e78135bde219a8e0a3df3a4f25d8bdacfa141ea9147d8cc3
cites cdi_FETCH-LOGICAL-c407t-56fcb2616aac33570e78135bde219a8e0a3df3a4f25d8bdacfa141ea9147d8cc3
container_end_page 12026
container_issue 1
container_start_page 12014
container_title IOP conference series. Materials Science and Engineering
container_volume 109
creator Richter, S
Pinard, P T
description Electron probe microanalysis and focussed ion beam milling are combined to improve the sensitivity and applicability of depth profiling quantification. With the nanoscale milling capabilities of the ion beam, very shallow bevels are milled by using a special preparation procedure to reduce any curtaining effect and minimize Ga ions implantation. A Ni Cr multilayered specimen is used to evaluate the depth resolution. The best results are obtained by a well-focussed electron beam offered by a field-emission microprobe. A new evaluation algorithm is presented to quantify the structure in terms of mass thicknesses or if the density is known in terms of real thicknesses. The quantification procedure is based on Monte Carlo simulations where calculated k-ratios (calibrated X-ray intensities) are compared to the experimental ones to find the optimal structure. In comparison with an ion milled cross-section, the proposed bevel technique is more sensitive and provides more information about the material's structure.
doi_str_mv 10.1088/1757-899X/109/1/012014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565076467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825449832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-56fcb2616aac33570e78135bde219a8e0a3df3a4f25d8bdacfa141ea9147d8cc3</originalsourceid><addsrcrecordid>eNqFkVFLwzAQgIsoOKd_QQK--OBcrk2b1Lc5Nh1s6IOCb-GaptDRNVuSDvbvzahM8MWn5HLfd-HuougW6CNQIcbAUz4Sef41BpqPYUwhpsDOosEpcX66C7iMrpxbU5pxxugg8lOzKepWl2T2vpo8kPnimWBbkpVpvSZTtI0hrt50DfratE8EyV5bF4JGE29MQypjya7D1tc-vO51sLE5uNoRU5HgBRIP2oYPnLed8p3V7jq6qLBx-ubnHEaf89nH9HW0fHtZTCfLkWKU-1GaVaqIM8gQVZKknGouIEmLUseQo9AUk7JKkFVxWoqiRFUhMNCYA-OlUCoZRvd93a01u047Lze1U7ppsNWmcxJEnDKWiyQO6N0fdG06G1pxMk6zlPKMZTxQWU8pa5yzupJbW2_QHiRQeVyGPM5ZHmcewlyC7JcRxLgXa7P9rfyP9A0OGI1P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565076467</pqid></control><display><type>article</type><title>Combined EPMA, FIB and Monte Carlo simulation: a versatile tool for quantitative analysis of multilayered structures</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><creator>Richter, S ; Pinard, P T</creator><creatorcontrib>Richter, S ; Pinard, P T</creatorcontrib><description>Electron probe microanalysis and focussed ion beam milling are combined to improve the sensitivity and applicability of depth profiling quantification. With the nanoscale milling capabilities of the ion beam, very shallow bevels are milled by using a special preparation procedure to reduce any curtaining effect and minimize Ga ions implantation. A Ni Cr multilayered specimen is used to evaluate the depth resolution. The best results are obtained by a well-focussed electron beam offered by a field-emission microprobe. A new evaluation algorithm is presented to quantify the structure in terms of mass thicknesses or if the density is known in terms of real thicknesses. The quantification procedure is based on Monte Carlo simulations where calculated k-ratios (calibrated X-ray intensities) are compared to the experimental ones to find the optimal structure. In comparison with an ion milled cross-section, the proposed bevel technique is more sensitive and provides more information about the material's structure.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/109/1/012014</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Bevels ; Computer simulation ; Depth profiling ; Electron beams ; Electron probe microanalysis ; Electron probes ; Electrons ; Emission analysis ; Genetic algorithms ; Ion beams ; Ion implantation ; Monte Carlo methods ; Monte Carlo simulation ; Nanostructure ; Quantitative analysis ; Thickness</subject><ispartof>IOP conference series. Materials Science and Engineering, 2016-02, Vol.109 (1), p.12014-12026</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2016. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-56fcb2616aac33570e78135bde219a8e0a3df3a4f25d8bdacfa141ea9147d8cc3</citedby><cites>FETCH-LOGICAL-c407t-56fcb2616aac33570e78135bde219a8e0a3df3a4f25d8bdacfa141ea9147d8cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2565076467?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>Richter, S</creatorcontrib><creatorcontrib>Pinard, P T</creatorcontrib><title>Combined EPMA, FIB and Monte Carlo simulation: a versatile tool for quantitative analysis of multilayered structures</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>Electron probe microanalysis and focussed ion beam milling are combined to improve the sensitivity and applicability of depth profiling quantification. With the nanoscale milling capabilities of the ion beam, very shallow bevels are milled by using a special preparation procedure to reduce any curtaining effect and minimize Ga ions implantation. A Ni Cr multilayered specimen is used to evaluate the depth resolution. The best results are obtained by a well-focussed electron beam offered by a field-emission microprobe. A new evaluation algorithm is presented to quantify the structure in terms of mass thicknesses or if the density is known in terms of real thicknesses. The quantification procedure is based on Monte Carlo simulations where calculated k-ratios (calibrated X-ray intensities) are compared to the experimental ones to find the optimal structure. In comparison with an ion milled cross-section, the proposed bevel technique is more sensitive and provides more information about the material's structure.</description><subject>Algorithms</subject><subject>Bevels</subject><subject>Computer simulation</subject><subject>Depth profiling</subject><subject>Electron beams</subject><subject>Electron probe microanalysis</subject><subject>Electron probes</subject><subject>Electrons</subject><subject>Emission analysis</subject><subject>Genetic algorithms</subject><subject>Ion beams</subject><subject>Ion implantation</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Nanostructure</subject><subject>Quantitative analysis</subject><subject>Thickness</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkVFLwzAQgIsoOKd_QQK--OBcrk2b1Lc5Nh1s6IOCb-GaptDRNVuSDvbvzahM8MWn5HLfd-HuougW6CNQIcbAUz4Sef41BpqPYUwhpsDOosEpcX66C7iMrpxbU5pxxugg8lOzKepWl2T2vpo8kPnimWBbkpVpvSZTtI0hrt50DfratE8EyV5bF4JGE29MQypjya7D1tc-vO51sLE5uNoRU5HgBRIP2oYPnLed8p3V7jq6qLBx-ubnHEaf89nH9HW0fHtZTCfLkWKU-1GaVaqIM8gQVZKknGouIEmLUseQo9AUk7JKkFVxWoqiRFUhMNCYA-OlUCoZRvd93a01u047Lze1U7ppsNWmcxJEnDKWiyQO6N0fdG06G1pxMk6zlPKMZTxQWU8pa5yzupJbW2_QHiRQeVyGPM5ZHmcewlyC7JcRxLgXa7P9rfyP9A0OGI1P</recordid><startdate>20160209</startdate><enddate>20160209</enddate><creator>Richter, S</creator><creator>Pinard, P T</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20160209</creationdate><title>Combined EPMA, FIB and Monte Carlo simulation: a versatile tool for quantitative analysis of multilayered structures</title><author>Richter, S ; Pinard, P T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-56fcb2616aac33570e78135bde219a8e0a3df3a4f25d8bdacfa141ea9147d8cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Bevels</topic><topic>Computer simulation</topic><topic>Depth profiling</topic><topic>Electron beams</topic><topic>Electron probe microanalysis</topic><topic>Electron probes</topic><topic>Electrons</topic><topic>Emission analysis</topic><topic>Genetic algorithms</topic><topic>Ion beams</topic><topic>Ion implantation</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Nanostructure</topic><topic>Quantitative analysis</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, S</creatorcontrib><creatorcontrib>Pinard, P T</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, S</au><au>Pinard, P T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined EPMA, FIB and Monte Carlo simulation: a versatile tool for quantitative analysis of multilayered structures</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2016-02-09</date><risdate>2016</risdate><volume>109</volume><issue>1</issue><spage>12014</spage><epage>12026</epage><pages>12014-12026</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>Electron probe microanalysis and focussed ion beam milling are combined to improve the sensitivity and applicability of depth profiling quantification. With the nanoscale milling capabilities of the ion beam, very shallow bevels are milled by using a special preparation procedure to reduce any curtaining effect and minimize Ga ions implantation. A Ni Cr multilayered specimen is used to evaluate the depth resolution. The best results are obtained by a well-focussed electron beam offered by a field-emission microprobe. A new evaluation algorithm is presented to quantify the structure in terms of mass thicknesses or if the density is known in terms of real thicknesses. The quantification procedure is based on Monte Carlo simulations where calculated k-ratios (calibrated X-ray intensities) are compared to the experimental ones to find the optimal structure. In comparison with an ion milled cross-section, the proposed bevel technique is more sensitive and provides more information about the material's structure.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/109/1/012014</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2016-02, Vol.109 (1), p.12014-12026
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2565076467
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access)
subjects Algorithms
Bevels
Computer simulation
Depth profiling
Electron beams
Electron probe microanalysis
Electron probes
Electrons
Emission analysis
Genetic algorithms
Ion beams
Ion implantation
Monte Carlo methods
Monte Carlo simulation
Nanostructure
Quantitative analysis
Thickness
title Combined EPMA, FIB and Monte Carlo simulation: a versatile tool for quantitative analysis of multilayered structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A52%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20EPMA,%20FIB%20and%20Monte%20Carlo%20simulation:%20a%20versatile%20tool%20for%20quantitative%20analysis%20of%20multilayered%20structures&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Richter,%20S&rft.date=2016-02-09&rft.volume=109&rft.issue=1&rft.spage=12014&rft.epage=12026&rft.pages=12014-12026&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/109/1/012014&rft_dat=%3Cproquest_cross%3E1825449832%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-56fcb2616aac33570e78135bde219a8e0a3df3a4f25d8bdacfa141ea9147d8cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565076467&rft_id=info:pmid/&rfr_iscdi=true