Loading…

Spatial-Spectral Radial Basis Function-Based Interpolation for Landsat ETM+ SLC-Off Image Gap Filling

The scan-line corrector (SLC) of the Landsat 7 ETM+ failed permanently in 2003, resulting in about 22% unscanned gap pixels in the SLC-off images, affecting greatly the utility of the ETM+ data. To address this issue, we propose a spatial-spectral radial basis function (SSRBF)-based interpolation me...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2021-09, Vol.59 (9), p.7901-7917
Main Authors: Wang, Qunming, Wang, Lanxing, Li, Zhongbin, Tong, Xiaohua, Atkinson, Peter M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The scan-line corrector (SLC) of the Landsat 7 ETM+ failed permanently in 2003, resulting in about 22% unscanned gap pixels in the SLC-off images, affecting greatly the utility of the ETM+ data. To address this issue, we propose a spatial-spectral radial basis function (SSRBF)-based interpolation method to fill gaps in SLC-off images. Different from the conventional spatial-only radial basis function (RBF) that has been widely used in other domains, SSRBF also integrates a spectral RBF to increase the accuracy of gap filling. Concurrently, global linear histogram matching is applied to alleviate the impact of potentially large differences between the known and SLC-off images in feature space, which is demonstrated mathematically in this article. SSRBF fully exploits information in the data themselves and is user-friendly. The experimental results on five groups of data sets covering different heterogeneous regions show that the proposed SSRBF method is an effective solution to gap filling, and it can produce more accurate results than six popular benchmark methods.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2020.3038878