Loading…

Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar

Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2021-09, Vol.59 (9), p.7957-7967
Main Authors: Worthmann, Brian M., Chambers, David H., Perlmutter, David S., Mast, Jeffrey E., Paglieroni, David W., Pechard, Christian T., Stevenson, Garrett A., Bond, Steven W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63
cites cdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63
container_end_page 7967
container_issue 9
container_start_page 7957
container_title IEEE transactions on geoscience and remote sensing
container_volume 59
creator Worthmann, Brian M.
Chambers, David H.
Perlmutter, David S.
Mast, Jeffrey E.
Paglieroni, David W.
Pechard, Christian T.
Stevenson, Garrett A.
Bond, Steven W.
description Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays.
doi_str_mv 10.1109/TGRS.2021.3051566
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2565236308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336275</ieee_id><sourcerecordid>2565236308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy630mOUrUWCkpb8bhsspO6pc3W3c1Bf70JLZ4GhuedeXkQuqVkQikpH9az5WrCCKMTTiSVSp2hEZWyyIgS4hyNCC1VxoqSXaKrGLeEUCFpPkKf012XEgT85GIKruqS823EjQ947fd-E8zhy9V4vjcbwKtkWmuCdb9mwLBr8Sz4rrXZO7SQQr9tN3hpeuYaXTRmF-HmNMfo4-V5PX3NFm-z-fRxkdWcq5TxyjY1sFJQofJSgjAV76uVwA0DaxthrBV1nnNSc1MXlgMxQpJcVkLRHBQfo_vj3UPw3x3EpLe-C23_UjOpJOOKk6Kn6JGqg48xQKMPwe1N-NGU6MGfHvzpwZ8--eszd8eMA4B_vuxrs1zyP5dobQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565236308</pqid></control><display><type>article</type><title>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Worthmann, Brian M. ; Chambers, David H. ; Perlmutter, David S. ; Mast, Jeffrey E. ; Paglieroni, David W. ; Pechard, Christian T. ; Stevenson, Garrett A. ; Bond, Steven W.</creator><creatorcontrib>Worthmann, Brian M. ; Chambers, David H. ; Perlmutter, David S. ; Mast, Jeffrey E. ; Paglieroni, David W. ; Pechard, Christian T. ; Stevenson, Garrett A. ; Bond, Steven W.</creatorcontrib><description>Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3051566</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Attenuation ; Attenuation coefficients ; Clutter ; Distribution ; Extinction coefficient ; Ground penetrating radar ; ground-penetrating radar (GPR) ; landmine detection ; Log-normal distribution ; Normal distribution ; Parameters ; Penetration depth ; Radar ; Radar imaging ; Shape ; Spatial variations ; Standardization ; Statistical analysis ; Statistical methods ; Tomography ; Transmitting antennas ; Weibull distribution</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-09, Vol.59 (9), p.7957-7967</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</citedby><cites>FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</cites><orcidid>0000-0003-2437-9038 ; 0000-0003-2465-081X ; 0000-0003-1065-8562 ; 0000-0001-7085-8334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Worthmann, Brian M.</creatorcontrib><creatorcontrib>Chambers, David H.</creatorcontrib><creatorcontrib>Perlmutter, David S.</creatorcontrib><creatorcontrib>Mast, Jeffrey E.</creatorcontrib><creatorcontrib>Paglieroni, David W.</creatorcontrib><creatorcontrib>Pechard, Christian T.</creatorcontrib><creatorcontrib>Stevenson, Garrett A.</creatorcontrib><creatorcontrib>Bond, Steven W.</creatorcontrib><title>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Attenuation</subject><subject>Attenuation coefficients</subject><subject>Clutter</subject><subject>Distribution</subject><subject>Extinction coefficient</subject><subject>Ground penetrating radar</subject><subject>ground-penetrating radar (GPR)</subject><subject>landmine detection</subject><subject>Log-normal distribution</subject><subject>Normal distribution</subject><subject>Parameters</subject><subject>Penetration depth</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Shape</subject><subject>Spatial variations</subject><subject>Standardization</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Tomography</subject><subject>Transmitting antennas</subject><subject>Weibull distribution</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy630mOUrUWCkpb8bhsspO6pc3W3c1Bf70JLZ4GhuedeXkQuqVkQikpH9az5WrCCKMTTiSVSp2hEZWyyIgS4hyNCC1VxoqSXaKrGLeEUCFpPkKf012XEgT85GIKruqS823EjQ947fd-E8zhy9V4vjcbwKtkWmuCdb9mwLBr8Sz4rrXZO7SQQr9tN3hpeuYaXTRmF-HmNMfo4-V5PX3NFm-z-fRxkdWcq5TxyjY1sFJQofJSgjAV76uVwA0DaxthrBV1nnNSc1MXlgMxQpJcVkLRHBQfo_vj3UPw3x3EpLe-C23_UjOpJOOKk6Kn6JGqg48xQKMPwe1N-NGU6MGfHvzpwZ8--eszd8eMA4B_vuxrs1zyP5dobQo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Worthmann, Brian M.</creator><creator>Chambers, David H.</creator><creator>Perlmutter, David S.</creator><creator>Mast, Jeffrey E.</creator><creator>Paglieroni, David W.</creator><creator>Pechard, Christian T.</creator><creator>Stevenson, Garrett A.</creator><creator>Bond, Steven W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2437-9038</orcidid><orcidid>https://orcid.org/0000-0003-2465-081X</orcidid><orcidid>https://orcid.org/0000-0003-1065-8562</orcidid><orcidid>https://orcid.org/0000-0001-7085-8334</orcidid></search><sort><creationdate>20210901</creationdate><title>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</title><author>Worthmann, Brian M. ; Chambers, David H. ; Perlmutter, David S. ; Mast, Jeffrey E. ; Paglieroni, David W. ; Pechard, Christian T. ; Stevenson, Garrett A. ; Bond, Steven W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Attenuation</topic><topic>Attenuation coefficients</topic><topic>Clutter</topic><topic>Distribution</topic><topic>Extinction coefficient</topic><topic>Ground penetrating radar</topic><topic>ground-penetrating radar (GPR)</topic><topic>landmine detection</topic><topic>Log-normal distribution</topic><topic>Normal distribution</topic><topic>Parameters</topic><topic>Penetration depth</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Shape</topic><topic>Spatial variations</topic><topic>Standardization</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Tomography</topic><topic>Transmitting antennas</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worthmann, Brian M.</creatorcontrib><creatorcontrib>Chambers, David H.</creatorcontrib><creatorcontrib>Perlmutter, David S.</creatorcontrib><creatorcontrib>Mast, Jeffrey E.</creatorcontrib><creatorcontrib>Paglieroni, David W.</creatorcontrib><creatorcontrib>Pechard, Christian T.</creatorcontrib><creatorcontrib>Stevenson, Garrett A.</creatorcontrib><creatorcontrib>Bond, Steven W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worthmann, Brian M.</au><au>Chambers, David H.</au><au>Perlmutter, David S.</au><au>Mast, Jeffrey E.</au><au>Paglieroni, David W.</au><au>Pechard, Christian T.</au><au>Stevenson, Garrett A.</au><au>Bond, Steven W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>59</volume><issue>9</issue><spage>7957</spage><epage>7967</epage><pages>7957-7967</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3051566</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2437-9038</orcidid><orcidid>https://orcid.org/0000-0003-2465-081X</orcidid><orcidid>https://orcid.org/0000-0003-1065-8562</orcidid><orcidid>https://orcid.org/0000-0001-7085-8334</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2021-09, Vol.59 (9), p.7957-7967
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2565236308
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Arrays
Attenuation
Attenuation coefficients
Clutter
Distribution
Extinction coefficient
Ground penetrating radar
ground-penetrating radar (GPR)
landmine detection
Log-normal distribution
Normal distribution
Parameters
Penetration depth
Radar
Radar imaging
Shape
Spatial variations
Standardization
Statistical analysis
Statistical methods
Tomography
Transmitting antennas
Weibull distribution
title Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clutter%20Distributions%20for%20Tomographic%20Image%20Standardization%20in%20Ground-Penetrating%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Worthmann,%20Brian%20M.&rft.date=2021-09-01&rft.volume=59&rft.issue=9&rft.spage=7957&rft.epage=7967&rft.pages=7957-7967&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3051566&rft_dat=%3Cproquest_ieee_%3E2565236308%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565236308&rft_id=info:pmid/&rft_ieee_id=9336275&rfr_iscdi=true