Loading…
Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar
Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of m...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2021-09, Vol.59 (9), p.7957-7967 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63 |
container_end_page | 7967 |
container_issue | 9 |
container_start_page | 7957 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 59 |
creator | Worthmann, Brian M. Chambers, David H. Perlmutter, David S. Mast, Jeffrey E. Paglieroni, David W. Pechard, Christian T. Stevenson, Garrett A. Bond, Steven W. |
description | Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays. |
doi_str_mv | 10.1109/TGRS.2021.3051566 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2565236308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9336275</ieee_id><sourcerecordid>2565236308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy630mOUrUWCkpb8bhsspO6pc3W3c1Bf70JLZ4GhuedeXkQuqVkQikpH9az5WrCCKMTTiSVSp2hEZWyyIgS4hyNCC1VxoqSXaKrGLeEUCFpPkKf012XEgT85GIKruqS823EjQ947fd-E8zhy9V4vjcbwKtkWmuCdb9mwLBr8Sz4rrXZO7SQQr9tN3hpeuYaXTRmF-HmNMfo4-V5PX3NFm-z-fRxkdWcq5TxyjY1sFJQofJSgjAV76uVwA0DaxthrBV1nnNSc1MXlgMxQpJcVkLRHBQfo_vj3UPw3x3EpLe-C23_UjOpJOOKk6Kn6JGqg48xQKMPwe1N-NGU6MGfHvzpwZ8--eszd8eMA4B_vuxrs1zyP5dobQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565236308</pqid></control><display><type>article</type><title>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Worthmann, Brian M. ; Chambers, David H. ; Perlmutter, David S. ; Mast, Jeffrey E. ; Paglieroni, David W. ; Pechard, Christian T. ; Stevenson, Garrett A. ; Bond, Steven W.</creator><creatorcontrib>Worthmann, Brian M. ; Chambers, David H. ; Perlmutter, David S. ; Mast, Jeffrey E. ; Paglieroni, David W. ; Pechard, Christian T. ; Stevenson, Garrett A. ; Bond, Steven W.</creatorcontrib><description>Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3051566</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Arrays ; Attenuation ; Attenuation coefficients ; Clutter ; Distribution ; Extinction coefficient ; Ground penetrating radar ; ground-penetrating radar (GPR) ; landmine detection ; Log-normal distribution ; Normal distribution ; Parameters ; Penetration depth ; Radar ; Radar imaging ; Shape ; Spatial variations ; Standardization ; Statistical analysis ; Statistical methods ; Tomography ; Transmitting antennas ; Weibull distribution</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-09, Vol.59 (9), p.7957-7967</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</citedby><cites>FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</cites><orcidid>0000-0003-2437-9038 ; 0000-0003-2465-081X ; 0000-0003-1065-8562 ; 0000-0001-7085-8334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9336275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Worthmann, Brian M.</creatorcontrib><creatorcontrib>Chambers, David H.</creatorcontrib><creatorcontrib>Perlmutter, David S.</creatorcontrib><creatorcontrib>Mast, Jeffrey E.</creatorcontrib><creatorcontrib>Paglieroni, David W.</creatorcontrib><creatorcontrib>Pechard, Christian T.</creatorcontrib><creatorcontrib>Stevenson, Garrett A.</creatorcontrib><creatorcontrib>Bond, Steven W.</creatorcontrib><title>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Attenuation</subject><subject>Attenuation coefficients</subject><subject>Clutter</subject><subject>Distribution</subject><subject>Extinction coefficient</subject><subject>Ground penetrating radar</subject><subject>ground-penetrating radar (GPR)</subject><subject>landmine detection</subject><subject>Log-normal distribution</subject><subject>Normal distribution</subject><subject>Parameters</subject><subject>Penetration depth</subject><subject>Radar</subject><subject>Radar imaging</subject><subject>Shape</subject><subject>Spatial variations</subject><subject>Standardization</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Tomography</subject><subject>Transmitting antennas</subject><subject>Weibull distribution</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jy630mOUrUWCkpb8bhsspO6pc3W3c1Bf70JLZ4GhuedeXkQuqVkQikpH9az5WrCCKMTTiSVSp2hEZWyyIgS4hyNCC1VxoqSXaKrGLeEUCFpPkKf012XEgT85GIKruqS823EjQ947fd-E8zhy9V4vjcbwKtkWmuCdb9mwLBr8Sz4rrXZO7SQQr9tN3hpeuYaXTRmF-HmNMfo4-V5PX3NFm-z-fRxkdWcq5TxyjY1sFJQofJSgjAV76uVwA0DaxthrBV1nnNSc1MXlgMxQpJcVkLRHBQfo_vj3UPw3x3EpLe-C23_UjOpJOOKk6Kn6JGqg48xQKMPwe1N-NGU6MGfHvzpwZ8--eszd8eMA4B_vuxrs1zyP5dobQo</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Worthmann, Brian M.</creator><creator>Chambers, David H.</creator><creator>Perlmutter, David S.</creator><creator>Mast, Jeffrey E.</creator><creator>Paglieroni, David W.</creator><creator>Pechard, Christian T.</creator><creator>Stevenson, Garrett A.</creator><creator>Bond, Steven W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2437-9038</orcidid><orcidid>https://orcid.org/0000-0003-2465-081X</orcidid><orcidid>https://orcid.org/0000-0003-1065-8562</orcidid><orcidid>https://orcid.org/0000-0001-7085-8334</orcidid></search><sort><creationdate>20210901</creationdate><title>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</title><author>Worthmann, Brian M. ; Chambers, David H. ; Perlmutter, David S. ; Mast, Jeffrey E. ; Paglieroni, David W. ; Pechard, Christian T. ; Stevenson, Garrett A. ; Bond, Steven W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Attenuation</topic><topic>Attenuation coefficients</topic><topic>Clutter</topic><topic>Distribution</topic><topic>Extinction coefficient</topic><topic>Ground penetrating radar</topic><topic>ground-penetrating radar (GPR)</topic><topic>landmine detection</topic><topic>Log-normal distribution</topic><topic>Normal distribution</topic><topic>Parameters</topic><topic>Penetration depth</topic><topic>Radar</topic><topic>Radar imaging</topic><topic>Shape</topic><topic>Spatial variations</topic><topic>Standardization</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Tomography</topic><topic>Transmitting antennas</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Worthmann, Brian M.</creatorcontrib><creatorcontrib>Chambers, David H.</creatorcontrib><creatorcontrib>Perlmutter, David S.</creatorcontrib><creatorcontrib>Mast, Jeffrey E.</creatorcontrib><creatorcontrib>Paglieroni, David W.</creatorcontrib><creatorcontrib>Pechard, Christian T.</creatorcontrib><creatorcontrib>Stevenson, Garrett A.</creatorcontrib><creatorcontrib>Bond, Steven W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Worthmann, Brian M.</au><au>Chambers, David H.</au><au>Perlmutter, David S.</au><au>Mast, Jeffrey E.</au><au>Paglieroni, David W.</au><au>Pechard, Christian T.</au><au>Stevenson, Garrett A.</au><au>Bond, Steven W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>59</volume><issue>9</issue><spage>7957</spage><epage>7967</epage><pages>7957-7967</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce 3-D distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. These clutter intensities spatially vary over several orders of magnitude and vary across different arrays, which makes a direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or log-normal distributions. Based on the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter- to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development that needs to be robust across multiple different arrays.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3051566</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2437-9038</orcidid><orcidid>https://orcid.org/0000-0003-2465-081X</orcidid><orcidid>https://orcid.org/0000-0003-1065-8562</orcidid><orcidid>https://orcid.org/0000-0001-7085-8334</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2021-09, Vol.59 (9), p.7957-7967 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2565236308 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Arrays Attenuation Attenuation coefficients Clutter Distribution Extinction coefficient Ground penetrating radar ground-penetrating radar (GPR) landmine detection Log-normal distribution Normal distribution Parameters Penetration depth Radar Radar imaging Shape Spatial variations Standardization Statistical analysis Statistical methods Tomography Transmitting antennas Weibull distribution |
title | Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A29%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clutter%20Distributions%20for%20Tomographic%20Image%20Standardization%20in%20Ground-Penetrating%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Worthmann,%20Brian%20M.&rft.date=2021-09-01&rft.volume=59&rft.issue=9&rft.spage=7957&rft.epage=7967&rft.pages=7957-7967&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3051566&rft_dat=%3Cproquest_ieee_%3E2565236308%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-3bdfce294146795e4ab30149e3a2eddf4add4c7730c3ac8d3e0a45075b4617e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565236308&rft_id=info:pmid/&rft_ieee_id=9336275&rfr_iscdi=true |