Loading…

A steel surface defect inspection approach towards smart industrial monitoring

With the advance in Industry 4.0, smart industrial monitoring has been proposed to timely discover faults and defects in industrial processes. Steel is widely used in manufacturing equipment, and steel surface defect inspection is of great significance to the normal operation of steel equipment in m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent manufacturing 2021-10, Vol.32 (7), p.1833-1843
Main Authors: Hao, Ruiyang, Lu, Bingyu, Cheng, Ying, Li, Xiu, Huang, Biqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the advance in Industry 4.0, smart industrial monitoring has been proposed to timely discover faults and defects in industrial processes. Steel is widely used in manufacturing equipment, and steel surface defect inspection is of great significance to the normal operation of steel equipment in manufacturing workshops. In steel defect inspection systems, industrial inspection robots generate images via scanning steel surface, and processors perform surface defect inspection algorithms on images. We focus on applying advanced object detection techniques to surface defect inspection algorithm for sheet steel. In the proposed steel surface defect inspection model, a deformable convolution enhanced backbone network firstly extracts complex features from multi-shape steel surface defects. Then the feature fusion network with balanced feature pyramid generates high-quality multi-resolution feature maps for the inspection of multi-size defects. Finally, detector network achieves the localization and classification of steel surface defects. The proposed model is evaluated on a typical steel surface defect dataset. Our model achieves 0.805 mAP, 0.144 higher than baseline models, and our model shows high efficiency in inference. Experiments are performed to reveal the effect of employed approaches, and results also show our model achieves a balance between inspection performance and inference efficiency.
ISSN:0956-5515
1572-8145
DOI:10.1007/s10845-020-01670-2