Loading…

Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes

The discharge of untreated high-salinity mine water will cause harm to the environment, such as the increase of salt content in river water. Capacitive deionization technology has the advantages of low cost, high efficiency, and no pollution . It is an effective means to treat highly mineralized wat...

Full description

Saved in:
Bibliographic Details
Published in:Water, air, and soil pollution air, and soil pollution, 2021-09, Vol.232 (9), Article 364
Main Authors: Xiaobing, Wang, Jinqiu, Liu, Yang, Liu, Sen, Li, Dong, Li, Tingting, Ma, An, Jin, Yanshe, Hu, Fengwei, Guan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-2ac17508aea151dcfdc50db1d9c380944fad30165051f836c67a7f90e86762f63
cites cdi_FETCH-LOGICAL-c358t-2ac17508aea151dcfdc50db1d9c380944fad30165051f836c67a7f90e86762f63
container_end_page
container_issue 9
container_start_page
container_title Water, air, and soil pollution
container_volume 232
creator Xiaobing, Wang
Jinqiu, Liu
Yang, Liu
Sen, Li
Dong, Li
Tingting, Ma
An, Jin
Yanshe, Hu
Fengwei, Guan
description The discharge of untreated high-salinity mine water will cause harm to the environment, such as the increase of salt content in river water. Capacitive deionization technology has the advantages of low cost, high efficiency, and no pollution . It is an effective means to treat highly mineralized water in the oil field. This paper establishes a simplified mathematical model based on the Nernst Planck equation, combined with porous media flow theory and Langmuir isotherm theory. The capacitive deionization process of NaCl solution by finite element method is simulated. The results show that the convection mass transfer effect of ions in the activated carbon electrodes is weak. When the initial solution ion concentration is equal, the activated carbon cathode can absorb more Cl − . In the solution with an initial concentration of 1.7 mol/m 3 , when the electrode adsorption reaches saturation, the concentration of Cl − is 0.1 mm lower than that of Na + . In the capacitive deionization process using activated carbon electrodes, the desalting efficiency of ions is almost proportional to the voltage and inversely proportional to the liquid flow rate. In a relatively low concentration solution, the desalination effect of using activated carbon as electrodes is better.
doi_str_mv 10.1007/s11270-021-05320-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2565281047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673510112</galeid><sourcerecordid>A673510112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-2ac17508aea151dcfdc50db1d9c380944fad30165051f836c67a7f90e86762f63</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9A5428bw6wALLcVPrR9KoBxuPhLLQ0GyXCluT-utF18SbcJiEeZ4J8yJ0ieEaA4ibhDERUALBJTBKoDwcoQlmgpZEUnKMJgCVLLkU8hSdpbSBfGQtJujtab-10RvdFU2vu0PyqQiumOmdNn7wH7a4tT70_lMPuRQvMRibUrFMvl8XjcmEHmyb-bjK7XlnzRBDa9M5OnG6S_bit07R8m7-OnsoF8_3j7NmURrK6qEk2mDBoNZWY4Zb41rDoF3hVhpag6wqp1sKmDNg2NWUGy60cBJszQUnjtMpuhrn7mJ439s0qE3Yx7xJUoRxRmoMlcjU9UitdWeV710Yojb5tnbrTeit8_m94YIyDDnKLJBRMDGkFK1Tu-i3Oh4UBvWduBoTVzlx9ZO4OmSJjlLKcL-28e8v_1hfeNaDzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565281047</pqid></control><display><type>article</type><title>Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Xiaobing, Wang ; Jinqiu, Liu ; Yang, Liu ; Sen, Li ; Dong, Li ; Tingting, Ma ; An, Jin ; Yanshe, Hu ; Fengwei, Guan</creator><creatorcontrib>Xiaobing, Wang ; Jinqiu, Liu ; Yang, Liu ; Sen, Li ; Dong, Li ; Tingting, Ma ; An, Jin ; Yanshe, Hu ; Fengwei, Guan</creatorcontrib><description>The discharge of untreated high-salinity mine water will cause harm to the environment, such as the increase of salt content in river water. Capacitive deionization technology has the advantages of low cost, high efficiency, and no pollution . It is an effective means to treat highly mineralized water in the oil field. This paper establishes a simplified mathematical model based on the Nernst Planck equation, combined with porous media flow theory and Langmuir isotherm theory. The capacitive deionization process of NaCl solution by finite element method is simulated. The results show that the convection mass transfer effect of ions in the activated carbon electrodes is weak. When the initial solution ion concentration is equal, the activated carbon cathode can absorb more Cl − . In the solution with an initial concentration of 1.7 mol/m 3 , when the electrode adsorption reaches saturation, the concentration of Cl − is 0.1 mm lower than that of Na + . In the capacitive deionization process using activated carbon electrodes, the desalting efficiency of ions is almost proportional to the voltage and inversely proportional to the liquid flow rate. In a relatively low concentration solution, the desalination effect of using activated carbon as electrodes is better.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-021-05320-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Activated carbon ; Adsorption ; Analysis ; Aquatic resources ; Atmospheric Protection/Air Quality Control/Air Pollution ; Carbon ; Cathodes ; Climate Change/Climate Change Impacts ; Computational fluid dynamics ; Convection ; Deionization ; Desalination ; Earth and Environmental Science ; Electrodes ; Environment ; Environmental monitoring ; Finite element method ; Flow rates ; Flow theory ; Flow velocity ; Hydrogeology ; Ion concentration ; Ions ; Liquid flow ; Mass transfer ; Mathematical models ; Mine drainage ; Mine water ; Mine waters ; Numerical analysis ; Oil and gas fields ; Oil fields ; Porous media ; River water ; Rivers ; Saline water conversion ; Salinity ; Saturation ; Sodium chloride ; Soil Science &amp; Conservation ; Water desalting ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2021-09, Vol.232 (9), Article 364</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-2ac17508aea151dcfdc50db1d9c380944fad30165051f836c67a7f90e86762f63</citedby><cites>FETCH-LOGICAL-c358t-2ac17508aea151dcfdc50db1d9c380944fad30165051f836c67a7f90e86762f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565281047/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565281047?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362,74766</link.rule.ids></links><search><creatorcontrib>Xiaobing, Wang</creatorcontrib><creatorcontrib>Jinqiu, Liu</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Sen, Li</creatorcontrib><creatorcontrib>Dong, Li</creatorcontrib><creatorcontrib>Tingting, Ma</creatorcontrib><creatorcontrib>An, Jin</creatorcontrib><creatorcontrib>Yanshe, Hu</creatorcontrib><creatorcontrib>Fengwei, Guan</creatorcontrib><title>Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>The discharge of untreated high-salinity mine water will cause harm to the environment, such as the increase of salt content in river water. Capacitive deionization technology has the advantages of low cost, high efficiency, and no pollution . It is an effective means to treat highly mineralized water in the oil field. This paper establishes a simplified mathematical model based on the Nernst Planck equation, combined with porous media flow theory and Langmuir isotherm theory. The capacitive deionization process of NaCl solution by finite element method is simulated. The results show that the convection mass transfer effect of ions in the activated carbon electrodes is weak. When the initial solution ion concentration is equal, the activated carbon cathode can absorb more Cl − . In the solution with an initial concentration of 1.7 mol/m 3 , when the electrode adsorption reaches saturation, the concentration of Cl − is 0.1 mm lower than that of Na + . In the capacitive deionization process using activated carbon electrodes, the desalting efficiency of ions is almost proportional to the voltage and inversely proportional to the liquid flow rate. In a relatively low concentration solution, the desalination effect of using activated carbon as electrodes is better.</description><subject>Activated carbon</subject><subject>Adsorption</subject><subject>Analysis</subject><subject>Aquatic resources</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Deionization</subject><subject>Desalination</subject><subject>Earth and Environmental Science</subject><subject>Electrodes</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Finite element method</subject><subject>Flow rates</subject><subject>Flow theory</subject><subject>Flow velocity</subject><subject>Hydrogeology</subject><subject>Ion concentration</subject><subject>Ions</subject><subject>Liquid flow</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Mine drainage</subject><subject>Mine water</subject><subject>Mine waters</subject><subject>Numerical analysis</subject><subject>Oil and gas fields</subject><subject>Oil fields</subject><subject>Porous media</subject><subject>River water</subject><subject>Rivers</subject><subject>Saline water conversion</subject><subject>Salinity</subject><subject>Saturation</subject><subject>Sodium chloride</subject><subject>Soil Science &amp; Conservation</subject><subject>Water desalting</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1PAyEQhonRxFr9A5428bw6wALLcVPrR9KoBxuPhLLQ0GyXCluT-utF18SbcJiEeZ4J8yJ0ieEaA4ibhDERUALBJTBKoDwcoQlmgpZEUnKMJgCVLLkU8hSdpbSBfGQtJujtab-10RvdFU2vu0PyqQiumOmdNn7wH7a4tT70_lMPuRQvMRibUrFMvl8XjcmEHmyb-bjK7XlnzRBDa9M5OnG6S_bit07R8m7-OnsoF8_3j7NmURrK6qEk2mDBoNZWY4Zb41rDoF3hVhpag6wqp1sKmDNg2NWUGy60cBJszQUnjtMpuhrn7mJ439s0qE3Yx7xJUoRxRmoMlcjU9UitdWeV710Yojb5tnbrTeit8_m94YIyDDnKLJBRMDGkFK1Tu-i3Oh4UBvWduBoTVzlx9ZO4OmSJjlLKcL-28e8v_1hfeNaDzQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Xiaobing, Wang</creator><creator>Jinqiu, Liu</creator><creator>Yang, Liu</creator><creator>Sen, Li</creator><creator>Dong, Li</creator><creator>Tingting, Ma</creator><creator>An, Jin</creator><creator>Yanshe, Hu</creator><creator>Fengwei, Guan</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes</title><author>Xiaobing, Wang ; Jinqiu, Liu ; Yang, Liu ; Sen, Li ; Dong, Li ; Tingting, Ma ; An, Jin ; Yanshe, Hu ; Fengwei, Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-2ac17508aea151dcfdc50db1d9c380944fad30165051f836c67a7f90e86762f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Adsorption</topic><topic>Analysis</topic><topic>Aquatic resources</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Deionization</topic><topic>Desalination</topic><topic>Earth and Environmental Science</topic><topic>Electrodes</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Finite element method</topic><topic>Flow rates</topic><topic>Flow theory</topic><topic>Flow velocity</topic><topic>Hydrogeology</topic><topic>Ion concentration</topic><topic>Ions</topic><topic>Liquid flow</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Mine drainage</topic><topic>Mine water</topic><topic>Mine waters</topic><topic>Numerical analysis</topic><topic>Oil and gas fields</topic><topic>Oil fields</topic><topic>Porous media</topic><topic>River water</topic><topic>Rivers</topic><topic>Saline water conversion</topic><topic>Salinity</topic><topic>Saturation</topic><topic>Sodium chloride</topic><topic>Soil Science &amp; Conservation</topic><topic>Water desalting</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiaobing, Wang</creatorcontrib><creatorcontrib>Jinqiu, Liu</creatorcontrib><creatorcontrib>Yang, Liu</creatorcontrib><creatorcontrib>Sen, Li</creatorcontrib><creatorcontrib>Dong, Li</creatorcontrib><creatorcontrib>Tingting, Ma</creatorcontrib><creatorcontrib>An, Jin</creatorcontrib><creatorcontrib>Yanshe, Hu</creatorcontrib><creatorcontrib>Fengwei, Guan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiaobing, Wang</au><au>Jinqiu, Liu</au><au>Yang, Liu</au><au>Sen, Li</au><au>Dong, Li</au><au>Tingting, Ma</au><au>An, Jin</au><au>Yanshe, Hu</au><au>Fengwei, Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>232</volume><issue>9</issue><artnum>364</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>The discharge of untreated high-salinity mine water will cause harm to the environment, such as the increase of salt content in river water. Capacitive deionization technology has the advantages of low cost, high efficiency, and no pollution . It is an effective means to treat highly mineralized water in the oil field. This paper establishes a simplified mathematical model based on the Nernst Planck equation, combined with porous media flow theory and Langmuir isotherm theory. The capacitive deionization process of NaCl solution by finite element method is simulated. The results show that the convection mass transfer effect of ions in the activated carbon electrodes is weak. When the initial solution ion concentration is equal, the activated carbon cathode can absorb more Cl − . In the solution with an initial concentration of 1.7 mol/m 3 , when the electrode adsorption reaches saturation, the concentration of Cl − is 0.1 mm lower than that of Na + . In the capacitive deionization process using activated carbon electrodes, the desalting efficiency of ions is almost proportional to the voltage and inversely proportional to the liquid flow rate. In a relatively low concentration solution, the desalination effect of using activated carbon as electrodes is better.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-021-05320-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2021-09, Vol.232 (9), Article 364
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_journals_2565281047
source ABI/INFORM Global (ProQuest); Springer Link
subjects Activated carbon
Adsorption
Analysis
Aquatic resources
Atmospheric Protection/Air Quality Control/Air Pollution
Carbon
Cathodes
Climate Change/Climate Change Impacts
Computational fluid dynamics
Convection
Deionization
Desalination
Earth and Environmental Science
Electrodes
Environment
Environmental monitoring
Finite element method
Flow rates
Flow theory
Flow velocity
Hydrogeology
Ion concentration
Ions
Liquid flow
Mass transfer
Mathematical models
Mine drainage
Mine water
Mine waters
Numerical analysis
Oil and gas fields
Oil fields
Porous media
River water
Rivers
Saline water conversion
Salinity
Saturation
Sodium chloride
Soil Science & Conservation
Water desalting
Water Quality/Water Pollution
title Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Analysis%20of%20Capacitive%20Deionization%20Process%20Using%20Activated%20Carbon%20Electrodes&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Xiaobing,%20Wang&rft.date=2021-09-01&rft.volume=232&rft.issue=9&rft.artnum=364&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-021-05320-y&rft_dat=%3Cgale_proqu%3EA673510112%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-2ac17508aea151dcfdc50db1d9c380944fad30165051f836c67a7f90e86762f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565281047&rft_id=info:pmid/&rft_galeid=A673510112&rfr_iscdi=true