Loading…
Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics
In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming...
Saved in:
Published in: | Journal of physics. Conference series 2018-11, Vol.1125 (1), p.12015 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73 |
container_end_page | |
container_issue | 1 |
container_start_page | 12015 |
container_title | Journal of physics. Conference series |
container_volume | 1125 |
creator | Lauber, Ph Lu, Z. |
description | In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models. |
doi_str_mv | 10.1088/1742-6596/1125/1/012015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565458303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565458303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqXwDVhiDrGd2EnGqIJSNYgFZst1YsVVGgfbBXXnZ_gOfgynhTLi5VnvvnOHA8A1RrcY5XmMs5REjBYsxpjQGMcIE4TpCZgck9PjP8_PwYVza4SS8LIJ-Ch70e28lqKDSvfaN1ElNsZGVtR666Do69-9sSvto3dd-xZuTN0EwFjo2wZWi_myhDLs9vfaB24YulDqtemhN3A5Lx_3mWsbYWHZqbevzx4O7c5p6S7BmRKda65-5hS83N89zx6i6mm-mJVVJJMs95EgWS2LQomEEkFXKcMsxRIpLFjKskJIWawSqVKa10UIG4kIydOa5pQRJVWWTMHNoXew5nXbOM_XZmuDAMcJZTSASfAyBdnhSlrjnG0UH6zeCLvjGPFROR9l8lEsH5VzzA_KA5kcSG2Gv-r_qG8dAIPV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565458303</pqid></control><display><type>article</type><title>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Lauber, Ph ; Lu, Z.</creator><creatorcontrib>Lauber, Ph ; Lu, Z.</creatorcontrib><description>In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1125/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Beta rays ; Damping ; Distribution functions ; Energetic particles ; Larmor radius ; Maxwellian distribution ; Propagation modes ; Stability analysis</subject><ispartof>Journal of physics. Conference series, 2018-11, Vol.1125 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</citedby><cites>FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2565458303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lauber, Ph</creatorcontrib><creatorcontrib>Lu, Z.</creatorcontrib><title>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models.</description><subject>Beta rays</subject><subject>Damping</subject><subject>Distribution functions</subject><subject>Energetic particles</subject><subject>Larmor radius</subject><subject>Maxwellian distribution</subject><subject>Propagation modes</subject><subject>Stability analysis</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkLFOwzAURS0EEqXwDVhiDrGd2EnGqIJSNYgFZst1YsVVGgfbBXXnZ_gOfgynhTLi5VnvvnOHA8A1RrcY5XmMs5REjBYsxpjQGMcIE4TpCZgck9PjP8_PwYVza4SS8LIJ-Ch70e28lqKDSvfaN1ElNsZGVtR666Do69-9sSvto3dd-xZuTN0EwFjo2wZWi_myhDLs9vfaB24YulDqtemhN3A5Lx_3mWsbYWHZqbevzx4O7c5p6S7BmRKda65-5hS83N89zx6i6mm-mJVVJJMs95EgWS2LQomEEkFXKcMsxRIpLFjKskJIWawSqVKa10UIG4kIydOa5pQRJVWWTMHNoXew5nXbOM_XZmuDAMcJZTSASfAyBdnhSlrjnG0UH6zeCLvjGPFROR9l8lEsH5VzzA_KA5kcSG2Gv-r_qG8dAIPV</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Lauber, Ph</creator><creator>Lu, Z.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181101</creationdate><title>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</title><author>Lauber, Ph ; Lu, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beta rays</topic><topic>Damping</topic><topic>Distribution functions</topic><topic>Energetic particles</topic><topic>Larmor radius</topic><topic>Maxwellian distribution</topic><topic>Propagation modes</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauber, Ph</creatorcontrib><creatorcontrib>Lu, Z.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauber, Ph</au><au>Lu, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>1125</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1125/1/012015</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2018-11, Vol.1125 (1), p.12015 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2565458303 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Beta rays Damping Distribution functions Energetic particles Larmor radius Maxwellian distribution Propagation modes Stability analysis |
title | Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20finite-Lamor-radius%20and%20finite-orbit-width%20model%20for%20the%20LIGKA%20code%20and%20its%20application%20to%20KGAM%20and%20shear%20Alfv%C3%A9n%20physics&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Lauber,%20Ph&rft.date=2018-11-01&rft.volume=1125&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1125/1/012015&rft_dat=%3Cproquest_cross%3E2565458303%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565458303&rft_id=info:pmid/&rfr_iscdi=true |