Loading…

Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics

In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2018-11, Vol.1125 (1), p.12015
Main Authors: Lauber, Ph, Lu, Z.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73
cites cdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73
container_end_page
container_issue 1
container_start_page 12015
container_title Journal of physics. Conference series
container_volume 1125
creator Lauber, Ph
Lu, Z.
description In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models.
doi_str_mv 10.1088/1742-6596/1125/1/012015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565458303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565458303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqXwDVhiDrGd2EnGqIJSNYgFZst1YsVVGgfbBXXnZ_gOfgynhTLi5VnvvnOHA8A1RrcY5XmMs5REjBYsxpjQGMcIE4TpCZgck9PjP8_PwYVza4SS8LIJ-Ch70e28lqKDSvfaN1ElNsZGVtR666Do69-9sSvto3dd-xZuTN0EwFjo2wZWi_myhDLs9vfaB24YulDqtemhN3A5Lx_3mWsbYWHZqbevzx4O7c5p6S7BmRKda65-5hS83N89zx6i6mm-mJVVJJMs95EgWS2LQomEEkFXKcMsxRIpLFjKskJIWawSqVKa10UIG4kIydOa5pQRJVWWTMHNoXew5nXbOM_XZmuDAMcJZTSASfAyBdnhSlrjnG0UH6zeCLvjGPFROR9l8lEsH5VzzA_KA5kcSG2Gv-r_qG8dAIPV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565458303</pqid></control><display><type>article</type><title>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Lauber, Ph ; Lu, Z.</creator><creatorcontrib>Lauber, Ph ; Lu, Z.</creatorcontrib><description>In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1125/1/012015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Beta rays ; Damping ; Distribution functions ; Energetic particles ; Larmor radius ; Maxwellian distribution ; Propagation modes ; Stability analysis</subject><ispartof>Journal of physics. Conference series, 2018-11, Vol.1125 (1), p.12015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</citedby><cites>FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2565458303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lauber, Ph</creatorcontrib><creatorcontrib>Lu, Z.</creatorcontrib><title>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models.</description><subject>Beta rays</subject><subject>Damping</subject><subject>Distribution functions</subject><subject>Energetic particles</subject><subject>Larmor radius</subject><subject>Maxwellian distribution</subject><subject>Propagation modes</subject><subject>Stability analysis</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkLFOwzAURS0EEqXwDVhiDrGd2EnGqIJSNYgFZst1YsVVGgfbBXXnZ_gOfgynhTLi5VnvvnOHA8A1RrcY5XmMs5REjBYsxpjQGMcIE4TpCZgck9PjP8_PwYVza4SS8LIJ-Ch70e28lqKDSvfaN1ElNsZGVtR666Do69-9sSvto3dd-xZuTN0EwFjo2wZWi_myhDLs9vfaB24YulDqtemhN3A5Lx_3mWsbYWHZqbevzx4O7c5p6S7BmRKda65-5hS83N89zx6i6mm-mJVVJJMs95EgWS2LQomEEkFXKcMsxRIpLFjKskJIWawSqVKa10UIG4kIydOa5pQRJVWWTMHNoXew5nXbOM_XZmuDAMcJZTSASfAyBdnhSlrjnG0UH6zeCLvjGPFROR9l8lEsH5VzzA_KA5kcSG2Gv-r_qG8dAIPV</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Lauber, Ph</creator><creator>Lu, Z.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20181101</creationdate><title>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</title><author>Lauber, Ph ; Lu, Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beta rays</topic><topic>Damping</topic><topic>Distribution functions</topic><topic>Energetic particles</topic><topic>Larmor radius</topic><topic>Maxwellian distribution</topic><topic>Propagation modes</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lauber, Ph</creatorcontrib><creatorcontrib>Lu, Z.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lauber, Ph</au><au>Lu, Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>1125</volume><issue>1</issue><spage>12015</spage><pages>12015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, a finite Larmor radius (FLR) and finite orbit width (FOW) model within the LIGKA [1] framework is derived and its implementation in LIGKA is verified against analytical theory. The model is based on an expansion in k ⊥ ϱi and thus valid for low and intermediate mode numbers. Assuming Maxwellian distribution functions and considering circulating ions only, analytical expressions for the non-adiabatic response in the quasi-neutrality (QN) and the gyrokinetic moment equation (GKM) are derived. It is shown how these expressions, also valid for n ≠ 0 can be connected to results in the literature for n = 0. Verification tests with analytical literature [2] are carried out for mode frequency, damping and radial mode propagation. A set of parameters is chosen that is based on recent experiments at ASDEX Upgrade [3] featuring strong EGAM (energetic particle induced geodesic acoustic mode) and BAE (beta-induced Alfvén eigenmode) activity. For finite n, the model can be used to determine the local radiative damping consistently, which is needed for the fast evaluation of linear AE (Alfvén eigenmode) stability boundaries that are typically required by energetic particle transport models.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1125/1/012015</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2018-11, Vol.1125 (1), p.12015
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2565458303
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Beta rays
Damping
Distribution functions
Energetic particles
Larmor radius
Maxwellian distribution
Propagation modes
Stability analysis
title Analytical finite-Lamor-radius and finite-orbit-width model for the LIGKA code and its application to KGAM and shear Alfvén physics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20finite-Lamor-radius%20and%20finite-orbit-width%20model%20for%20the%20LIGKA%20code%20and%20its%20application%20to%20KGAM%20and%20shear%20Alfv%C3%A9n%20physics&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Lauber,%20Ph&rft.date=2018-11-01&rft.volume=1125&rft.issue=1&rft.spage=12015&rft.pages=12015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1125/1/012015&rft_dat=%3Cproquest_cross%3E2565458303%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-a27dc99fa352a5b461641c0f1a64679acc9b3cf458d9461ec02284d58562fcf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565458303&rft_id=info:pmid/&rfr_iscdi=true