Loading…
A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem
In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a p...
Saved in:
Published in: | Mathematical problems in engineering 2021, Vol.2021, p.1-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Tian, Shifang Liu, Xiaowei An, Ran |
description | In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space. |
doi_str_mv | 10.1155/2021/9941692 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565925250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565925250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz9gwaPG7kd2kxxLtVYotFgFb8tmM9tuSZM6SZD-e1Pas6eZw8M7zEvIPWfPnCs1EkzwUZbFXGfiggy40jJSPE4u-52JOOJCfl-Tm6bZsl4qng7Ix5jOwnoDGC2wAKTTUIUW6EvwHhAqB3TlNrAD6mukq1Ctu9JieaBLwLbDHAq6tGjzugyOLrHOS9jdkitvywbuznNIvqavn5NZNF-8vU_G88hJmbQRLwornUi5T6SS2nshtOIWcutykcpECSVdwnwRa6FTyLVnLkkAlPBp2n8ih-ThlLvH-qeDpjXbusOqP2mE0ioTfQLr1dNJOaybBsGbPYadxYPhzBxbM8fWzLm1nj-e-CZUhf0N_-s__z5q-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565925250</pqid></control><display><type>article</type><title>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley-Blackwell Titles (Open access)</source><creator>Tian, Shifang ; Liu, Xiaowei ; An, Ran</creator><contributor>Wang, Hui ; Hui Wang</contributor><creatorcontrib>Tian, Shifang ; Liu, Xiaowei ; An, Ran ; Wang, Hui ; Hui Wang</creatorcontrib><description>In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/9941692</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Approximation ; Convection-diffusion equation ; Discretization ; Finite difference method ; Finite element analysis ; Linear equations ; Mathematical analysis ; Preconditioning</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Shifang Tian et al.</rights><rights>Copyright © 2021 Shifang Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</citedby><cites>FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</cites><orcidid>0000-0002-9862-0675 ; 0000-0003-2134-5537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565925250/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565925250?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Wang, Hui</contributor><contributor>Hui Wang</contributor><creatorcontrib>Tian, Shifang</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><title>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</title><title>Mathematical problems in engineering</title><description>In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Convection-diffusion equation</subject><subject>Discretization</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Preconditioning</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVmz9gwaPG7kd2kxxLtVYotFgFb8tmM9tuSZM6SZD-e1Pas6eZw8M7zEvIPWfPnCs1EkzwUZbFXGfiggy40jJSPE4u-52JOOJCfl-Tm6bZsl4qng7Ix5jOwnoDGC2wAKTTUIUW6EvwHhAqB3TlNrAD6mukq1Ctu9JieaBLwLbDHAq6tGjzugyOLrHOS9jdkitvywbuznNIvqavn5NZNF-8vU_G88hJmbQRLwornUi5T6SS2nshtOIWcutykcpECSVdwnwRa6FTyLVnLkkAlPBp2n8ih-ThlLvH-qeDpjXbusOqP2mE0ioTfQLr1dNJOaybBsGbPYadxYPhzBxbM8fWzLm1nj-e-CZUhf0N_-s__z5q-w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Tian, Shifang</creator><creator>Liu, Xiaowei</creator><creator>An, Ran</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9862-0675</orcidid><orcidid>https://orcid.org/0000-0003-2134-5537</orcidid></search><sort><creationdate>2021</creationdate><title>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</title><author>Tian, Shifang ; Liu, Xiaowei ; An, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Convection-diffusion equation</topic><topic>Discretization</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Preconditioning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Shifang</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Shifang</au><au>Liu, Xiaowei</au><au>An, Ran</au><au>Wang, Hui</au><au>Hui Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9941692</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9862-0675</orcidid><orcidid>https://orcid.org/0000-0003-2134-5537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021, Vol.2021, p.1-11 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2565925250 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley-Blackwell Titles (Open access) |
subjects | Accuracy Approximation Convection-diffusion equation Discretization Finite difference method Finite element analysis Linear equations Mathematical analysis Preconditioning |
title | A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Higher-Order%20Finite%20Difference%20Scheme%20for%20Singularly%20Perturbed%20Parabolic%20Problem&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Tian,%20Shifang&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/9941692&rft_dat=%3Cproquest_cross%3E2565925250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565925250&rft_id=info:pmid/&rfr_iscdi=true |