Loading…

A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem

In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a p...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2021, Vol.2021, p.1-11
Main Authors: Tian, Shifang, Liu, Xiaowei, An, Ran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233
cites cdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233
container_end_page 11
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Tian, Shifang
Liu, Xiaowei
An, Ran
description In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.
doi_str_mv 10.1155/2021/9941692
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565925250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565925250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</originalsourceid><addsrcrecordid>eNp90E1Lw0AQBuBFFKzVmz9gwaPG7kd2kxxLtVYotFgFb8tmM9tuSZM6SZD-e1Pas6eZw8M7zEvIPWfPnCs1EkzwUZbFXGfiggy40jJSPE4u-52JOOJCfl-Tm6bZsl4qng7Ix5jOwnoDGC2wAKTTUIUW6EvwHhAqB3TlNrAD6mukq1Ctu9JieaBLwLbDHAq6tGjzugyOLrHOS9jdkitvywbuznNIvqavn5NZNF-8vU_G88hJmbQRLwornUi5T6SS2nshtOIWcutykcpECSVdwnwRa6FTyLVnLkkAlPBp2n8ih-ThlLvH-qeDpjXbusOqP2mE0ioTfQLr1dNJOaybBsGbPYadxYPhzBxbM8fWzLm1nj-e-CZUhf0N_-s__z5q-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565925250</pqid></control><display><type>article</type><title>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Wiley-Blackwell Titles (Open access)</source><creator>Tian, Shifang ; Liu, Xiaowei ; An, Ran</creator><contributor>Wang, Hui ; Hui Wang</contributor><creatorcontrib>Tian, Shifang ; Liu, Xiaowei ; An, Ran ; Wang, Hui ; Hui Wang</creatorcontrib><description>In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/9941692</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Approximation ; Convection-diffusion equation ; Discretization ; Finite difference method ; Finite element analysis ; Linear equations ; Mathematical analysis ; Preconditioning</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Shifang Tian et al.</rights><rights>Copyright © 2021 Shifang Tian et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</citedby><cites>FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</cites><orcidid>0000-0002-9862-0675 ; 0000-0003-2134-5537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565925250/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565925250?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Wang, Hui</contributor><contributor>Hui Wang</contributor><creatorcontrib>Tian, Shifang</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><title>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</title><title>Mathematical problems in engineering</title><description>In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Convection-diffusion equation</subject><subject>Discretization</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Linear equations</subject><subject>Mathematical analysis</subject><subject>Preconditioning</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90E1Lw0AQBuBFFKzVmz9gwaPG7kd2kxxLtVYotFgFb8tmM9tuSZM6SZD-e1Pas6eZw8M7zEvIPWfPnCs1EkzwUZbFXGfiggy40jJSPE4u-52JOOJCfl-Tm6bZsl4qng7Ix5jOwnoDGC2wAKTTUIUW6EvwHhAqB3TlNrAD6mukq1Ctu9JieaBLwLbDHAq6tGjzugyOLrHOS9jdkitvywbuznNIvqavn5NZNF-8vU_G88hJmbQRLwornUi5T6SS2nshtOIWcutykcpECSVdwnwRa6FTyLVnLkkAlPBp2n8ih-ThlLvH-qeDpjXbusOqP2mE0ioTfQLr1dNJOaybBsGbPYadxYPhzBxbM8fWzLm1nj-e-CZUhf0N_-s__z5q-w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Tian, Shifang</creator><creator>Liu, Xiaowei</creator><creator>An, Ran</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9862-0675</orcidid><orcidid>https://orcid.org/0000-0003-2134-5537</orcidid></search><sort><creationdate>2021</creationdate><title>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</title><author>Tian, Shifang ; Liu, Xiaowei ; An, Ran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Convection-diffusion equation</topic><topic>Discretization</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Linear equations</topic><topic>Mathematical analysis</topic><topic>Preconditioning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Shifang</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>An, Ran</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Shifang</au><au>Liu, Xiaowei</au><au>An, Ran</au><au>Wang, Hui</au><au>Hui Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, we deal with a singularly perturbed parabolic convection-diffusion problem. Shishkin mesh and a hybrid third-order finite difference scheme are adopted for the spatial discretization. Uniform mesh and the backward Euler scheme are used for the temporal discretization. Furthermore, a preconditioning approach is also used to ensure uniform convergence. Numerical experiments show that the method is first-order accuracy in time and almost third-order accuracy in space.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9941692</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9862-0675</orcidid><orcidid>https://orcid.org/0000-0003-2134-5537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021, Vol.2021, p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2565925250
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Wiley-Blackwell Titles (Open access)
subjects Accuracy
Approximation
Convection-diffusion equation
Discretization
Finite difference method
Finite element analysis
Linear equations
Mathematical analysis
Preconditioning
title A Higher-Order Finite Difference Scheme for Singularly Perturbed Parabolic Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Higher-Order%20Finite%20Difference%20Scheme%20for%20Singularly%20Perturbed%20Parabolic%20Problem&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Tian,%20Shifang&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/9941692&rft_dat=%3Cproquest_cross%3E2565925250%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-1dda3c281f73536ff22651aebacb28375253c70fd46268eb6f0c77ee52f881233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565925250&rft_id=info:pmid/&rfr_iscdi=true