Loading…

Structure, Optical and Varistor Properties of One-Dimensional Co-Doped ZnO Synthesized by Reflux Method

One-dimensional ZnO composites doped with different Co contents (0 mol.%, 1 mol.%, and 1.5 mol.%) were successfully prepared by the reflux method. Microstructural studies of the as-obtained powders were studied by x-ray powder diffraction, Fourier transform infrared spectra, and scanning electron mi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2021-10, Vol.50 (10), p.5891-5897
Main Authors: Shi, Yu, Liu, Quan-Guo, Chen, Yong, Wang, Mao-Hua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c18603d753460e9e4e78907142439eac704f5b22c05cc146d6e525198f1132e53
cites cdi_FETCH-LOGICAL-c319t-c18603d753460e9e4e78907142439eac704f5b22c05cc146d6e525198f1132e53
container_end_page 5897
container_issue 10
container_start_page 5891
container_title Journal of electronic materials
container_volume 50
creator Shi, Yu
Liu, Quan-Guo
Chen, Yong
Wang, Mao-Hua
description One-dimensional ZnO composites doped with different Co contents (0 mol.%, 1 mol.%, and 1.5 mol.%) were successfully prepared by the reflux method. Microstructural studies of the as-obtained powders were studied by x-ray powder diffraction, Fourier transform infrared spectra, and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy. SEM observation showed that the morphology of ZnO particles is influenced by the concentration of Co doping, which formed rod-like and quasi-spherically shaped particles. All samples indicated a hexagonal wurtzite structure. When the Co content increased from 0 mol.% to 1.5 mol.%, the calculated crystallite size decreases from 56.62 nm to 54.38 nm. The change in bond length, lattice parameters, and micro-strain for Co-doped ZnO powders indicate that Co ions have entered the ZnO lattice. The study of the optical properties of ZnO powders proves that the doping of Co increases the absorptance and reduces the band gap of ZnO. The 1.0 mol.% Co-doped ZnO varistor sintered at 1200°C for 2 h has a breakdown voltage of 345.3 V/mm and nonlinear coefficient of 11.7.
doi_str_mv 10.1007/s11664-021-09106-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2565932348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2565932348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c18603d753460e9e4e78907142439eac704f5b22c05cc146d6e525198f1132e53</originalsourceid><addsrcrecordid>eNp9kE1LHEEQhhsx4Gr8Azk1eLVjVX_NzFFWTQTDStQQcmnGnprdkXV67e6BrL8-nayQm6eiqOd9KR7GPiF8RoDqLCFaqwVIFNAgWAF7bIZGK4G1_bnPZqAsCiOVOWCHKT0BoMEaZ2x5l-Pk8xTplC82efDtmrdjx3-0cUg5RH4bw4ZiHijx0PPFSOJieKYxDWEs6DyIi3Lv-K9xwe-2Y15RGl7L_rjl36lfT7_5N8qr0H1kH_p2nej4bR6xh6vL-_lXcbP4cj0_vxFeYZOFL--C6iqjtAVqSFNVN1Chllo11PoKdG8epfRgvEdtO0tGGmzqHlFJMuqInex6NzG8TJSyewpTLK8mJ401jZJK14WSO8rHkFKk3m3i8NzGrUNwf4W6nVBXhLp_Qh2UkNqFUoHHJcX_1e-k_gAHdHeH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565932348</pqid></control><display><type>article</type><title>Structure, Optical and Varistor Properties of One-Dimensional Co-Doped ZnO Synthesized by Reflux Method</title><source>Springer Nature</source><creator>Shi, Yu ; Liu, Quan-Guo ; Chen, Yong ; Wang, Mao-Hua</creator><creatorcontrib>Shi, Yu ; Liu, Quan-Guo ; Chen, Yong ; Wang, Mao-Hua</creatorcontrib><description>One-dimensional ZnO composites doped with different Co contents (0 mol.%, 1 mol.%, and 1.5 mol.%) were successfully prepared by the reflux method. Microstructural studies of the as-obtained powders were studied by x-ray powder diffraction, Fourier transform infrared spectra, and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy. SEM observation showed that the morphology of ZnO particles is influenced by the concentration of Co doping, which formed rod-like and quasi-spherically shaped particles. All samples indicated a hexagonal wurtzite structure. When the Co content increased from 0 mol.% to 1.5 mol.%, the calculated crystallite size decreases from 56.62 nm to 54.38 nm. The change in bond length, lattice parameters, and micro-strain for Co-doped ZnO powders indicate that Co ions have entered the ZnO lattice. The study of the optical properties of ZnO powders proves that the doping of Co increases the absorptance and reduces the band gap of ZnO. The 1.0 mol.% Co-doped ZnO varistor sintered at 1200°C for 2 h has a breakdown voltage of 345.3 V/mm and nonlinear coefficient of 11.7.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-021-09106-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Absorptance ; Absorptivity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Doping ; Electronics and Microelectronics ; Fourier transforms ; Infrared spectra ; Instrumentation ; Lattice parameters ; Materials Science ; Mathematical analysis ; Morphology ; Optical and Electronic Materials ; Optical properties ; Original Research Article ; Scanning electron microscopy ; Sintering (powder metallurgy) ; Solid State Physics ; Spectrum analysis ; Wurtzite ; X ray powder diffraction ; Zinc oxide</subject><ispartof>Journal of electronic materials, 2021-10, Vol.50 (10), p.5891-5897</ispartof><rights>The Minerals, Metals &amp; Materials Society 2021</rights><rights>The Minerals, Metals &amp; Materials Society 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c18603d753460e9e4e78907142439eac704f5b22c05cc146d6e525198f1132e53</citedby><cites>FETCH-LOGICAL-c319t-c18603d753460e9e4e78907142439eac704f5b22c05cc146d6e525198f1132e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Liu, Quan-Guo</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Wang, Mao-Hua</creatorcontrib><title>Structure, Optical and Varistor Properties of One-Dimensional Co-Doped ZnO Synthesized by Reflux Method</title><title>Journal of electronic materials</title><addtitle>J. Electron. Mater</addtitle><description>One-dimensional ZnO composites doped with different Co contents (0 mol.%, 1 mol.%, and 1.5 mol.%) were successfully prepared by the reflux method. Microstructural studies of the as-obtained powders were studied by x-ray powder diffraction, Fourier transform infrared spectra, and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy. SEM observation showed that the morphology of ZnO particles is influenced by the concentration of Co doping, which formed rod-like and quasi-spherically shaped particles. All samples indicated a hexagonal wurtzite structure. When the Co content increased from 0 mol.% to 1.5 mol.%, the calculated crystallite size decreases from 56.62 nm to 54.38 nm. The change in bond length, lattice parameters, and micro-strain for Co-doped ZnO powders indicate that Co ions have entered the ZnO lattice. The study of the optical properties of ZnO powders proves that the doping of Co increases the absorptance and reduces the band gap of ZnO. The 1.0 mol.% Co-doped ZnO varistor sintered at 1200°C for 2 h has a breakdown voltage of 345.3 V/mm and nonlinear coefficient of 11.7.</description><subject>Absorptance</subject><subject>Absorptivity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Doping</subject><subject>Electronics and Microelectronics</subject><subject>Fourier transforms</subject><subject>Infrared spectra</subject><subject>Instrumentation</subject><subject>Lattice parameters</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Morphology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Original Research Article</subject><subject>Scanning electron microscopy</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Wurtzite</subject><subject>X ray powder diffraction</subject><subject>Zinc oxide</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LHEEQhhsx4Gr8Azk1eLVjVX_NzFFWTQTDStQQcmnGnprdkXV67e6BrL8-nayQm6eiqOd9KR7GPiF8RoDqLCFaqwVIFNAgWAF7bIZGK4G1_bnPZqAsCiOVOWCHKT0BoMEaZ2x5l-Pk8xTplC82efDtmrdjx3-0cUg5RH4bw4ZiHijx0PPFSOJieKYxDWEs6DyIi3Lv-K9xwe-2Y15RGl7L_rjl36lfT7_5N8qr0H1kH_p2nej4bR6xh6vL-_lXcbP4cj0_vxFeYZOFL--C6iqjtAVqSFNVN1Chllo11PoKdG8epfRgvEdtO0tGGmzqHlFJMuqInex6NzG8TJSyewpTLK8mJ401jZJK14WSO8rHkFKk3m3i8NzGrUNwf4W6nVBXhLp_Qh2UkNqFUoHHJcX_1e-k_gAHdHeH</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Shi, Yu</creator><creator>Liu, Quan-Guo</creator><creator>Chen, Yong</creator><creator>Wang, Mao-Hua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20211001</creationdate><title>Structure, Optical and Varistor Properties of One-Dimensional Co-Doped ZnO Synthesized by Reflux Method</title><author>Shi, Yu ; Liu, Quan-Guo ; Chen, Yong ; Wang, Mao-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c18603d753460e9e4e78907142439eac704f5b22c05cc146d6e525198f1132e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorptance</topic><topic>Absorptivity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Doping</topic><topic>Electronics and Microelectronics</topic><topic>Fourier transforms</topic><topic>Infrared spectra</topic><topic>Instrumentation</topic><topic>Lattice parameters</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Morphology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Original Research Article</topic><topic>Scanning electron microscopy</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Wurtzite</topic><topic>X ray powder diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Liu, Quan-Guo</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Wang, Mao-Hua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Yu</au><au>Liu, Quan-Guo</au><au>Chen, Yong</au><au>Wang, Mao-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure, Optical and Varistor Properties of One-Dimensional Co-Doped ZnO Synthesized by Reflux Method</atitle><jtitle>Journal of electronic materials</jtitle><stitle>J. Electron. Mater</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>50</volume><issue>10</issue><spage>5891</spage><epage>5897</epage><pages>5891-5897</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>One-dimensional ZnO composites doped with different Co contents (0 mol.%, 1 mol.%, and 1.5 mol.%) were successfully prepared by the reflux method. Microstructural studies of the as-obtained powders were studied by x-ray powder diffraction, Fourier transform infrared spectra, and scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy. SEM observation showed that the morphology of ZnO particles is influenced by the concentration of Co doping, which formed rod-like and quasi-spherically shaped particles. All samples indicated a hexagonal wurtzite structure. When the Co content increased from 0 mol.% to 1.5 mol.%, the calculated crystallite size decreases from 56.62 nm to 54.38 nm. The change in bond length, lattice parameters, and micro-strain for Co-doped ZnO powders indicate that Co ions have entered the ZnO lattice. The study of the optical properties of ZnO powders proves that the doping of Co increases the absorptance and reduces the band gap of ZnO. The 1.0 mol.% Co-doped ZnO varistor sintered at 1200°C for 2 h has a breakdown voltage of 345.3 V/mm and nonlinear coefficient of 11.7.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-021-09106-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2021-10, Vol.50 (10), p.5891-5897
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2565932348
source Springer Nature
subjects Absorptance
Absorptivity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Doping
Electronics and Microelectronics
Fourier transforms
Infrared spectra
Instrumentation
Lattice parameters
Materials Science
Mathematical analysis
Morphology
Optical and Electronic Materials
Optical properties
Original Research Article
Scanning electron microscopy
Sintering (powder metallurgy)
Solid State Physics
Spectrum analysis
Wurtzite
X ray powder diffraction
Zinc oxide
title Structure, Optical and Varistor Properties of One-Dimensional Co-Doped ZnO Synthesized by Reflux Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure,%20Optical%20and%20Varistor%20Properties%20of%20One-Dimensional%20Co-Doped%20ZnO%20Synthesized%20by%20Reflux%20Method&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Shi,%20Yu&rft.date=2021-10-01&rft.volume=50&rft.issue=10&rft.spage=5891&rft.epage=5897&rft.pages=5891-5897&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-021-09106-0&rft_dat=%3Cproquest_cross%3E2565932348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c18603d753460e9e4e78907142439eac704f5b22c05cc146d6e525198f1132e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565932348&rft_id=info:pmid/&rfr_iscdi=true