Loading…
Implementation of Artificial Neural Network to Predict S&P 500 Stock Closing Price
Artificial Neural Network (ANN) is a learning method that can be used for prediction and classification. In this study, ANN back-propagation is implemented to predict the closing price of the S&P 500 stock exchange using historical data. Historical data consisting of five variables, namely open,...
Saved in:
Published in: | Journal of physics. Conference series 2019-03, Vol.1175 (1), p.12107 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c413t-376d0a82fe08931e250798e1281b1777d0a2287497f7da6cf51a7bceea918ba73 |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | 12107 |
container_title | Journal of physics. Conference series |
container_volume | 1175 |
creator | Fitriyaningsih, Ike Tampubolon, Anthon R. Lumbanraja, Harry L. Pasaribu, Grace E. Sitorus, Pita S.A. |
description | Artificial Neural Network (ANN) is a learning method that can be used for prediction and classification. In this study, ANN back-propagation is implemented to predict the closing price of the S&P 500 stock exchange using historical data. Historical data consisting of five variables, namely open, high, low, close, and volume. The historical data are taken from finance.yahoo.com which stores historical data of daily stock prices up to 65 years earlier. The data is designed based on daily prediction scenarios of the closing stock price of the S&P 500 stock exchange. Using the scenario an application prototype using R and Java software has been successfully built. The prototype is dynamic during select the data set (10, 50, 100, 500 past data) to get the best stock closing prediction for the next day. The selection of the best stock closing prediction uses the MAPE (Mean Average Percentage Error) criterion which is in contrast to the prediction accuracy level. The smaller the MAPE value the better the predicted result. Based on the implementation results, the average MAPE for daily forecast for 1 month in April 2017 was 0.2307 indicating that the average daily prediction accuracy rate for 1 month was 99.77%. Our prototype application can make prediction automatically every day, every time when connected to the internet. |
doi_str_mv | 10.1088/1742-6596/1175/1/012107 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566021277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566021277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-376d0a82fe08931e250798e1281b1777d0a2287497f7da6cf51a7bceea918ba73</originalsourceid><addsrcrecordid>eNqFkG9LwzAQh4MoOKefwYDgC6E2l65N-nIU_0yGDqevQ5Ymkq1rapohfntbK4ogeG_u4PfcHTwInQK5BMJ5DGxCoyzNsxiApTHEBCgQtodG38n-98z5ITpq2zUhSVdshB5n26bSW10HGayrsTN46oM1VllZ4Xu9858tvDm_wcHhhdelVQEvzxc4JQQvg1MbXFSutfVLl1qlj9GBkVWrT776GD1fXz0Vt9H84WZWTOeRmkASooRlJZGcGk14noCmKWE510A5rIAx1oWUcjbJmWGlzJRJQbKV0lrmwFeSJWN0NtxtvHvd6TaItdv5unspaJplhAJlPcUGSnnXtl4b0Xi7lf5dABG9QNGrEb0m0QsUIAaB3ebFsGld83P6blEsf4OiKU0HJ3_A_734AK-Rfes</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566021277</pqid></control><display><type>article</type><title>Implementation of Artificial Neural Network to Predict S&P 500 Stock Closing Price</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Fitriyaningsih, Ike ; Tampubolon, Anthon R. ; Lumbanraja, Harry L. ; Pasaribu, Grace E. ; Sitorus, Pita S.A.</creator><creatorcontrib>Fitriyaningsih, Ike ; Tampubolon, Anthon R. ; Lumbanraja, Harry L. ; Pasaribu, Grace E. ; Sitorus, Pita S.A.</creatorcontrib><description>Artificial Neural Network (ANN) is a learning method that can be used for prediction and classification. In this study, ANN back-propagation is implemented to predict the closing price of the S&P 500 stock exchange using historical data. Historical data consisting of five variables, namely open, high, low, close, and volume. The historical data are taken from finance.yahoo.com which stores historical data of daily stock prices up to 65 years earlier. The data is designed based on daily prediction scenarios of the closing stock price of the S&P 500 stock exchange. Using the scenario an application prototype using R and Java software has been successfully built. The prototype is dynamic during select the data set (10, 50, 100, 500 past data) to get the best stock closing prediction for the next day. The selection of the best stock closing prediction uses the MAPE (Mean Average Percentage Error) criterion which is in contrast to the prediction accuracy level. The smaller the MAPE value the better the predicted result. Based on the implementation results, the average MAPE for daily forecast for 1 month in April 2017 was 0.2307 indicating that the average daily prediction accuracy rate for 1 month was 99.77%. Our prototype application can make prediction automatically every day, every time when connected to the internet.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1175/1/012107</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Artificial neural networks ; Back propagation ; Back propagation networks ; Internet stocks ; Learning theory ; Neural networks ; Predictions ; Prototypes ; Stock exchanges</subject><ispartof>Journal of physics. Conference series, 2019-03, Vol.1175 (1), p.12107</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-376d0a82fe08931e250798e1281b1777d0a2287497f7da6cf51a7bceea918ba73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566021277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Fitriyaningsih, Ike</creatorcontrib><creatorcontrib>Tampubolon, Anthon R.</creatorcontrib><creatorcontrib>Lumbanraja, Harry L.</creatorcontrib><creatorcontrib>Pasaribu, Grace E.</creatorcontrib><creatorcontrib>Sitorus, Pita S.A.</creatorcontrib><title>Implementation of Artificial Neural Network to Predict S&P 500 Stock Closing Price</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Artificial Neural Network (ANN) is a learning method that can be used for prediction and classification. In this study, ANN back-propagation is implemented to predict the closing price of the S&P 500 stock exchange using historical data. Historical data consisting of five variables, namely open, high, low, close, and volume. The historical data are taken from finance.yahoo.com which stores historical data of daily stock prices up to 65 years earlier. The data is designed based on daily prediction scenarios of the closing stock price of the S&P 500 stock exchange. Using the scenario an application prototype using R and Java software has been successfully built. The prototype is dynamic during select the data set (10, 50, 100, 500 past data) to get the best stock closing prediction for the next day. The selection of the best stock closing prediction uses the MAPE (Mean Average Percentage Error) criterion which is in contrast to the prediction accuracy level. The smaller the MAPE value the better the predicted result. Based on the implementation results, the average MAPE for daily forecast for 1 month in April 2017 was 0.2307 indicating that the average daily prediction accuracy rate for 1 month was 99.77%. Our prototype application can make prediction automatically every day, every time when connected to the internet.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Internet stocks</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Prototypes</subject><subject>Stock exchanges</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkG9LwzAQh4MoOKefwYDgC6E2l65N-nIU_0yGDqevQ5Ymkq1rapohfntbK4ogeG_u4PfcHTwInQK5BMJ5DGxCoyzNsxiApTHEBCgQtodG38n-98z5ITpq2zUhSVdshB5n26bSW10HGayrsTN46oM1VllZ4Xu9858tvDm_wcHhhdelVQEvzxc4JQQvg1MbXFSutfVLl1qlj9GBkVWrT776GD1fXz0Vt9H84WZWTOeRmkASooRlJZGcGk14noCmKWE510A5rIAx1oWUcjbJmWGlzJRJQbKV0lrmwFeSJWN0NtxtvHvd6TaItdv5unspaJplhAJlPcUGSnnXtl4b0Xi7lf5dABG9QNGrEb0m0QsUIAaB3ebFsGld83P6blEsf4OiKU0HJ3_A_734AK-Rfes</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Fitriyaningsih, Ike</creator><creator>Tampubolon, Anthon R.</creator><creator>Lumbanraja, Harry L.</creator><creator>Pasaribu, Grace E.</creator><creator>Sitorus, Pita S.A.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190301</creationdate><title>Implementation of Artificial Neural Network to Predict S&P 500 Stock Closing Price</title><author>Fitriyaningsih, Ike ; Tampubolon, Anthon R. ; Lumbanraja, Harry L. ; Pasaribu, Grace E. ; Sitorus, Pita S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-376d0a82fe08931e250798e1281b1777d0a2287497f7da6cf51a7bceea918ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Internet stocks</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Prototypes</topic><topic>Stock exchanges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fitriyaningsih, Ike</creatorcontrib><creatorcontrib>Tampubolon, Anthon R.</creatorcontrib><creatorcontrib>Lumbanraja, Harry L.</creatorcontrib><creatorcontrib>Pasaribu, Grace E.</creatorcontrib><creatorcontrib>Sitorus, Pita S.A.</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fitriyaningsih, Ike</au><au>Tampubolon, Anthon R.</au><au>Lumbanraja, Harry L.</au><au>Pasaribu, Grace E.</au><au>Sitorus, Pita S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Artificial Neural Network to Predict S&P 500 Stock Closing Price</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>1175</volume><issue>1</issue><spage>12107</spage><pages>12107-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Artificial Neural Network (ANN) is a learning method that can be used for prediction and classification. In this study, ANN back-propagation is implemented to predict the closing price of the S&P 500 stock exchange using historical data. Historical data consisting of five variables, namely open, high, low, close, and volume. The historical data are taken from finance.yahoo.com which stores historical data of daily stock prices up to 65 years earlier. The data is designed based on daily prediction scenarios of the closing stock price of the S&P 500 stock exchange. Using the scenario an application prototype using R and Java software has been successfully built. The prototype is dynamic during select the data set (10, 50, 100, 500 past data) to get the best stock closing prediction for the next day. The selection of the best stock closing prediction uses the MAPE (Mean Average Percentage Error) criterion which is in contrast to the prediction accuracy level. The smaller the MAPE value the better the predicted result. Based on the implementation results, the average MAPE for daily forecast for 1 month in April 2017 was 0.2307 indicating that the average daily prediction accuracy rate for 1 month was 99.77%. Our prototype application can make prediction automatically every day, every time when connected to the internet.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1175/1/012107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2019-03, Vol.1175 (1), p.12107 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2566021277 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry |
subjects | Artificial neural networks Back propagation Back propagation networks Internet stocks Learning theory Neural networks Predictions Prototypes Stock exchanges |
title | Implementation of Artificial Neural Network to Predict S&P 500 Stock Closing Price |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Artificial%20Neural%20Network%20to%20Predict%20S&P%20500%20Stock%20Closing%20Price&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Fitriyaningsih,%20Ike&rft.date=2019-03-01&rft.volume=1175&rft.issue=1&rft.spage=12107&rft.pages=12107-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1175/1/012107&rft_dat=%3Cproquest_cross%3E2566021277%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c413t-376d0a82fe08931e250798e1281b1777d0a2287497f7da6cf51a7bceea918ba73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566021277&rft_id=info:pmid/&rfr_iscdi=true |