Loading…
Design of a new multiplexer structure based on a new fault-tolerant majority gate in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) technology is believed to be a good alternative to CMOS technology. This nanoscale technology can provide a platform for design and implementation of high performance and power efficient logic circuits. However, the fabrication of QCA circuits is susceptible to fa...
Saved in:
Published in: | Optical and quantum electronics 2021-09, Vol.53 (9), Article 539 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum-dot cellular automata (QCA) technology is believed to be a good alternative to CMOS technology. This nanoscale technology can provide a platform for design and implementation of high performance and power efficient logic circuits. However, the fabrication of QCA circuits is susceptible to faults appearing in this form of missing cells, additional cells, rotated cells and displaced cells. Over the years, several solutions have been proposed to address these problems. This paper presents a new solution for improving the fault tolerance of three input majority gate. The proposed majority gate is then used to design 2-1 multiplexer and 4-1 multiplexer. The proposed designs are implemented in QCA Designer. Simulation results demonstrate significant improvements in terms of fault tolerance and area requirement. The proposed gate consists of 11 cells and requires an area of 0.0096 μm
2
. The proposed design has 100% tolerance to the fault of a single missing cell and 71.43% tolerance to the rotation of one cell. The proposed 2-1 multiplexer consists of 41 cells and requires an area of 0.066 μm
2
. This multiplexer has 95.24% tolerance to the fault of a single missing cell. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-021-03179-1 |