Loading…

Construction of the model of recognition operators in the large dimensional feature space

In this paper, the problem of constructing a modified model of recognition operators based on potential functions is considered. The main advantage of the proposed recognition operators is the improvement of accuracy and a significant reduction in the amount of computational operations for the recog...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-03, Vol.1210 (1), p.12044
Main Authors: Fazilov, Sh, Radjabov, S, Mirzaev, O, Mirzaeva, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c359t-ec763cc05fe58a77f0d89c854e7f89ddda806937e991285b1232e29980d2cd6b3
container_end_page
container_issue 1
container_start_page 12044
container_title Journal of physics. Conference series
container_volume 1210
creator Fazilov, Sh
Radjabov, S
Mirzaev, O
Mirzaeva, S
description In this paper, the problem of constructing a modified model of recognition operators based on potential functions is considered. The main advantage of the proposed recognition operators is the improvement of accuracy and a significant reduction in the amount of computational operations for the recognition of unknown objects, which makes it possible to apply them in the construction of real-time recognition systems. To test the efficiency of the proposed model, experimental research was carried out to solve the generated model problem and the problem of face recognition.
doi_str_mv 10.1088/1742-6596/1210/1/012044
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566124190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566124190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ec763cc05fe58a77f0d89c854e7f89ddda806937e991285b1232e29980d2cd6b3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BgvehNok_UhylOInCwrqwVPIJpO1S9vUpD34722trAiCuSTDPPNOeBA6JfiCYM4TwjIaF7koEkIJTkiCCcVZtocWu87-7s35IToKYYtxOh62QK-la0PvB91Xro2cjfo3iBpnoJ4KD9pt2mrudeBV73yIqvaLqpXfQGSqBtowAqqOLKh-8BCFTmk4RgdW1QFOvu8lerm-ei5v49XDzV15uYp1mos-Bs2KVGucW8i5Ysxiw4XmeQbMcmGMURwXImUgBKE8XxOaUqBCcGyoNsU6XaKzObfz7n2A0MutG_z4nSBpXhSEZkTgkWIzpb0LwYOVna8a5T8kwXLyKCdDcrIlJ4-SyNnjOHk-T1au-4m-fyyffoOyM3aE0z_g_1Z8AuiDgr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566124190</pqid></control><display><type>article</type><title>Construction of the model of recognition operators in the large dimensional feature space</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Fazilov, Sh ; Radjabov, S ; Mirzaev, O ; Mirzaeva, S</creator><creatorcontrib>Fazilov, Sh ; Radjabov, S ; Mirzaev, O ; Mirzaeva, S</creatorcontrib><description>In this paper, the problem of constructing a modified model of recognition operators based on potential functions is considered. The main advantage of the proposed recognition operators is the improvement of accuracy and a significant reduction in the amount of computational operations for the recognition of unknown objects, which makes it possible to apply them in the construction of real-time recognition systems. To test the efficiency of the proposed model, experimental research was carried out to solve the generated model problem and the problem of face recognition.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1210/1/012044</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Face recognition ; Object recognition ; Operators</subject><ispartof>Journal of physics. Conference series, 2019-03, Vol.1210 (1), p.12044</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-ec763cc05fe58a77f0d89c854e7f89ddda806937e991285b1232e29980d2cd6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566124190?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Fazilov, Sh</creatorcontrib><creatorcontrib>Radjabov, S</creatorcontrib><creatorcontrib>Mirzaev, O</creatorcontrib><creatorcontrib>Mirzaeva, S</creatorcontrib><title>Construction of the model of recognition operators in the large dimensional feature space</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this paper, the problem of constructing a modified model of recognition operators based on potential functions is considered. The main advantage of the proposed recognition operators is the improvement of accuracy and a significant reduction in the amount of computational operations for the recognition of unknown objects, which makes it possible to apply them in the construction of real-time recognition systems. To test the efficiency of the proposed model, experimental research was carried out to solve the generated model problem and the problem of face recognition.</description><subject>Face recognition</subject><subject>Object recognition</subject><subject>Operators</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkE1LxDAQhoMouK7-BgvehNok_UhylOInCwrqwVPIJpO1S9vUpD34722trAiCuSTDPPNOeBA6JfiCYM4TwjIaF7koEkIJTkiCCcVZtocWu87-7s35IToKYYtxOh62QK-la0PvB91Xro2cjfo3iBpnoJ4KD9pt2mrudeBV73yIqvaLqpXfQGSqBtowAqqOLKh-8BCFTmk4RgdW1QFOvu8lerm-ei5v49XDzV15uYp1mos-Bs2KVGucW8i5Ysxiw4XmeQbMcmGMURwXImUgBKE8XxOaUqBCcGyoNsU6XaKzObfz7n2A0MutG_z4nSBpXhSEZkTgkWIzpb0LwYOVna8a5T8kwXLyKCdDcrIlJ4-SyNnjOHk-T1au-4m-fyyffoOyM3aE0z_g_1Z8AuiDgr4</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Fazilov, Sh</creator><creator>Radjabov, S</creator><creator>Mirzaev, O</creator><creator>Mirzaeva, S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190301</creationdate><title>Construction of the model of recognition operators in the large dimensional feature space</title><author>Fazilov, Sh ; Radjabov, S ; Mirzaev, O ; Mirzaeva, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ec763cc05fe58a77f0d89c854e7f89ddda806937e991285b1232e29980d2cd6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Face recognition</topic><topic>Object recognition</topic><topic>Operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fazilov, Sh</creatorcontrib><creatorcontrib>Radjabov, S</creatorcontrib><creatorcontrib>Mirzaev, O</creatorcontrib><creatorcontrib>Mirzaeva, S</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fazilov, Sh</au><au>Radjabov, S</au><au>Mirzaev, O</au><au>Mirzaeva, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of the model of recognition operators in the large dimensional feature space</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>1210</volume><issue>1</issue><spage>12044</spage><pages>12044-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this paper, the problem of constructing a modified model of recognition operators based on potential functions is considered. The main advantage of the proposed recognition operators is the improvement of accuracy and a significant reduction in the amount of computational operations for the recognition of unknown objects, which makes it possible to apply them in the construction of real-time recognition systems. To test the efficiency of the proposed model, experimental research was carried out to solve the generated model problem and the problem of face recognition.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1210/1/012044</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-03, Vol.1210 (1), p.12044
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2566124190
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Face recognition
Object recognition
Operators
title Construction of the model of recognition operators in the large dimensional feature space
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20the%20model%20of%20recognition%20operators%20in%20the%20large%20dimensional%20feature%20space&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Fazilov,%20Sh&rft.date=2019-03-01&rft.volume=1210&rft.issue=1&rft.spage=12044&rft.pages=12044-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1210/1/012044&rft_dat=%3Cproquest_cross%3E2566124190%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-ec763cc05fe58a77f0d89c854e7f89ddda806937e991285b1232e29980d2cd6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566124190&rft_id=info:pmid/&rfr_iscdi=true