Loading…

Adaptive context-aware correlation filter target tracking

Aiming at the problem that the traditional correlation filter target tracking algorithm has low tracking accuracy under the conditions of fast motion, occlusion and complex background, an adaptive context-aware correlation filter target tracking algorithm is proposed in this paper. On the basis of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2019-06, Vol.1213 (5), p.52077
Main Authors: Zhou, Saijun, Zhang, Chengwang, Xiong, Xuying, He, Ran, Qiu, Jingang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2747-480266db47314094d7a1344f822aa03d5ba4a9c788778249da888672350b3c583
container_end_page
container_issue 5
container_start_page 52077
container_title Journal of physics. Conference series
container_volume 1213
creator Zhou, Saijun
Zhang, Chengwang
Xiong, Xuying
He, Ran
Qiu, Jingang
description Aiming at the problem that the traditional correlation filter target tracking algorithm has low tracking accuracy under the conditions of fast motion, occlusion and complex background, an adaptive context-aware correlation filter target tracking algorithm is proposed in this paper. On the basis of the relevant filtering algorithm, the boundary effect and fixed learning rate brought by cyclic displacement are improved as the main purpose. Firstly, an adaptive sampling strategy based on the extreme value of the response graph is added to the context information in the training stage of the classifier. Then, A piecewise learning rate adjustment strategy is utilized to make the algorithm better adapt to the target change. Finally, the performance of the algorithm is verified by the standard data set. The experimental results show that the proposed algorithm improves the tracking accuracy of DCF and SAMF algorithm respectively. It not only has good robustness in the case of fast motion, occlusion, complex background, etc., but also can be integrated into most relevant filtering algorithms as a framework.
doi_str_mv 10.1088/1742-6596/1213/5/052077
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2566142581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566142581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2747-480266db47314094d7a1344f822aa03d5ba4a9c788778249da888672350b3c583</originalsourceid><addsrcrecordid>eNqFkFtLw0AQhRdRsFZ_gwHfhJi97-SxFK1KQUF9XibJpqTWJG62Xv69CZGKIDgvM8OccwY-Qk4ZvWAUIGFG8lirVCeMM5GohCpOjdkjk91lfzcDHJKjrltTKvoyE5LOCmxD9eaivKmD-wgxvqMfNu_dBkPV1FFZbYLzUUC_ciEKHvPnql4dk4MSN507-e5T8nR1-Ti_jpd3i5v5bBnn3EgTS6Bc6yKTRjBJU1kYZELKEjhHpKJQGUpMcwNgDHCZFggA2nChaCZyBWJKzsbc1jevW9cFu262vu5fWq60ZpIrYL3KjKrcN13nXWlbX72g_7SM2oGTHQjYgYYdOFllR069U4zOqml_ov93nf_hur2fP_wW2rYoxRdZMHWS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566142581</pqid></control><display><type>article</type><title>Adaptive context-aware correlation filter target tracking</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhou, Saijun ; Zhang, Chengwang ; Xiong, Xuying ; He, Ran ; Qiu, Jingang</creator><creatorcontrib>Zhou, Saijun ; Zhang, Chengwang ; Xiong, Xuying ; He, Ran ; Qiu, Jingang</creatorcontrib><description>Aiming at the problem that the traditional correlation filter target tracking algorithm has low tracking accuracy under the conditions of fast motion, occlusion and complex background, an adaptive context-aware correlation filter target tracking algorithm is proposed in this paper. On the basis of the relevant filtering algorithm, the boundary effect and fixed learning rate brought by cyclic displacement are improved as the main purpose. Firstly, an adaptive sampling strategy based on the extreme value of the response graph is added to the context information in the training stage of the classifier. Then, A piecewise learning rate adjustment strategy is utilized to make the algorithm better adapt to the target change. Finally, the performance of the algorithm is verified by the standard data set. The experimental results show that the proposed algorithm improves the tracking accuracy of DCF and SAMF algorithm respectively. It not only has good robustness in the case of fast motion, occlusion, complex background, etc., but also can be integrated into most relevant filtering algorithms as a framework.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1213/5/052077</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Adaptive sampling ; Algorithms ; Context ; Correlation ; Extreme values ; Filtration ; Machine learning ; Occlusion ; Standard data ; Tracking</subject><ispartof>Journal of physics. Conference series, 2019-06, Vol.1213 (5), p.52077</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2747-480266db47314094d7a1344f822aa03d5ba4a9c788778249da888672350b3c583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566142581?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhou, Saijun</creatorcontrib><creatorcontrib>Zhang, Chengwang</creatorcontrib><creatorcontrib>Xiong, Xuying</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Qiu, Jingang</creatorcontrib><title>Adaptive context-aware correlation filter target tracking</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>Aiming at the problem that the traditional correlation filter target tracking algorithm has low tracking accuracy under the conditions of fast motion, occlusion and complex background, an adaptive context-aware correlation filter target tracking algorithm is proposed in this paper. On the basis of the relevant filtering algorithm, the boundary effect and fixed learning rate brought by cyclic displacement are improved as the main purpose. Firstly, an adaptive sampling strategy based on the extreme value of the response graph is added to the context information in the training stage of the classifier. Then, A piecewise learning rate adjustment strategy is utilized to make the algorithm better adapt to the target change. Finally, the performance of the algorithm is verified by the standard data set. The experimental results show that the proposed algorithm improves the tracking accuracy of DCF and SAMF algorithm respectively. It not only has good robustness in the case of fast motion, occlusion, complex background, etc., but also can be integrated into most relevant filtering algorithms as a framework.</description><subject>Adaptive sampling</subject><subject>Algorithms</subject><subject>Context</subject><subject>Correlation</subject><subject>Extreme values</subject><subject>Filtration</subject><subject>Machine learning</subject><subject>Occlusion</subject><subject>Standard data</subject><subject>Tracking</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkFtLw0AQhRdRsFZ_gwHfhJi97-SxFK1KQUF9XibJpqTWJG62Xv69CZGKIDgvM8OccwY-Qk4ZvWAUIGFG8lirVCeMM5GohCpOjdkjk91lfzcDHJKjrltTKvoyE5LOCmxD9eaivKmD-wgxvqMfNu_dBkPV1FFZbYLzUUC_ciEKHvPnql4dk4MSN507-e5T8nR1-Ti_jpd3i5v5bBnn3EgTS6Bc6yKTRjBJU1kYZELKEjhHpKJQGUpMcwNgDHCZFggA2nChaCZyBWJKzsbc1jevW9cFu262vu5fWq60ZpIrYL3KjKrcN13nXWlbX72g_7SM2oGTHQjYgYYdOFllR069U4zOqml_ov93nf_hur2fP_wW2rYoxRdZMHWS</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhou, Saijun</creator><creator>Zhang, Chengwang</creator><creator>Xiong, Xuying</creator><creator>He, Ran</creator><creator>Qiu, Jingang</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190601</creationdate><title>Adaptive context-aware correlation filter target tracking</title><author>Zhou, Saijun ; Zhang, Chengwang ; Xiong, Xuying ; He, Ran ; Qiu, Jingang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2747-480266db47314094d7a1344f822aa03d5ba4a9c788778249da888672350b3c583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive sampling</topic><topic>Algorithms</topic><topic>Context</topic><topic>Correlation</topic><topic>Extreme values</topic><topic>Filtration</topic><topic>Machine learning</topic><topic>Occlusion</topic><topic>Standard data</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Saijun</creatorcontrib><creatorcontrib>Zhang, Chengwang</creatorcontrib><creatorcontrib>Xiong, Xuying</creatorcontrib><creatorcontrib>He, Ran</creatorcontrib><creatorcontrib>Qiu, Jingang</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Saijun</au><au>Zhang, Chengwang</au><au>Xiong, Xuying</au><au>He, Ran</au><au>Qiu, Jingang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive context-aware correlation filter target tracking</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>1213</volume><issue>5</issue><spage>52077</spage><pages>52077-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>Aiming at the problem that the traditional correlation filter target tracking algorithm has low tracking accuracy under the conditions of fast motion, occlusion and complex background, an adaptive context-aware correlation filter target tracking algorithm is proposed in this paper. On the basis of the relevant filtering algorithm, the boundary effect and fixed learning rate brought by cyclic displacement are improved as the main purpose. Firstly, an adaptive sampling strategy based on the extreme value of the response graph is added to the context information in the training stage of the classifier. Then, A piecewise learning rate adjustment strategy is utilized to make the algorithm better adapt to the target change. Finally, the performance of the algorithm is verified by the standard data set. The experimental results show that the proposed algorithm improves the tracking accuracy of DCF and SAMF algorithm respectively. It not only has good robustness in the case of fast motion, occlusion, complex background, etc., but also can be integrated into most relevant filtering algorithms as a framework.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1213/5/052077</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2019-06, Vol.1213 (5), p.52077
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2566142581
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry
subjects Adaptive sampling
Algorithms
Context
Correlation
Extreme values
Filtration
Machine learning
Occlusion
Standard data
Tracking
title Adaptive context-aware correlation filter target tracking
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20context-aware%20correlation%20filter%20target%20tracking&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhou,%20Saijun&rft.date=2019-06-01&rft.volume=1213&rft.issue=5&rft.spage=52077&rft.pages=52077-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1213/5/052077&rft_dat=%3Cproquest_iop_j%3E2566142581%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2747-480266db47314094d7a1344f822aa03d5ba4a9c788778249da888672350b3c583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566142581&rft_id=info:pmid/&rfr_iscdi=true