Loading…

Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China

This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 st...

Full description

Saved in:
Bibliographic Details
Published in:Urban rail transit 2021-09, Vol.7 (3), p.209-225
Main Authors: Sheng, Qiang, Jiao, Junfeng, Pang, Tianyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823
cites cdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823
container_end_page 225
container_issue 3
container_start_page 209
container_title Urban rail transit
container_volume 7
creator Sheng, Qiang
Jiao, Junfeng
Pang, Tianyu
description This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement.
doi_str_mv 10.1007/s40864-021-00152-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566146118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566146118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEElXpH2CyxErAdmInZqvKV6VKVKKdLcc-t6moU2xn6L_HJQg2prvhed47vVl2TfAdwbi6DyWueZljSnKMCaO5OMtGlAiRc16J89-9ri6zSQg7jBNK6pKyUWbXzoAPUTnTug2KW0Dz_UHpiDqL3qMHiGipYgTvAuocWoKBEH2rHHpsT0vTx7ZzD2iKZipAUnpzRK1Dq4TsWneLZtvWqavswqqPAJOfOc7Wz0-r2Wu-eHuZz6aLXBdcxNyq2ihmqDZgG0sZE5YTzYw1nBDOi6agDMCahjSK1VApI0BoDZo2WpCaFuPsZsg9-O6zT5_KXdd7l05KyjgnZcqpE0UHSvsuBA9WHny7V_4oCZanSuVQqUw9ye9KpUhSMUghwW4D_i_6H-sLat96oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566146118</pqid></control><display><type>article</type><title>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Sheng, Qiang ; Jiao, Junfeng ; Pang, Tianyu</creator><creatorcontrib>Sheng, Qiang ; Jiao, Junfeng ; Pang, Tianyu</creatorcontrib><description>This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement.</description><identifier>ISSN: 2199-6687</identifier><identifier>EISSN: 2199-6679</identifier><identifier>DOI: 10.1007/s40864-021-00152-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accessibility ; Automotive Engineering ; City centres ; Computational Intelligence ; Engineering ; Foundations ; Gate counting ; Geoengineering ; Hydraulics ; Impact analysis ; Neighborhoods ; Original Research Papers ; Regression models ; Suburban areas ; Suburbs ; Subway stations</subject><ispartof>Urban rail transit, 2021-09, Vol.7 (3), p.209-225</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</citedby><cites>FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</cites><orcidid>0000-0002-4761-7716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566146118?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590</link.rule.ids></links><search><creatorcontrib>Sheng, Qiang</creatorcontrib><creatorcontrib>Jiao, Junfeng</creatorcontrib><creatorcontrib>Pang, Tianyu</creatorcontrib><title>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</title><title>Urban rail transit</title><addtitle>Urban Rail Transit</addtitle><description>This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement.</description><subject>Accessibility</subject><subject>Automotive Engineering</subject><subject>City centres</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Foundations</subject><subject>Gate counting</subject><subject>Geoengineering</subject><subject>Hydraulics</subject><subject>Impact analysis</subject><subject>Neighborhoods</subject><subject>Original Research Papers</subject><subject>Regression models</subject><subject>Suburban areas</subject><subject>Suburbs</subject><subject>Subway stations</subject><issn>2199-6687</issn><issn>2199-6679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kD1PwzAQhiMEElXpH2CyxErAdmInZqvKV6VKVKKdLcc-t6moU2xn6L_HJQg2prvhed47vVl2TfAdwbi6DyWueZljSnKMCaO5OMtGlAiRc16J89-9ri6zSQg7jBNK6pKyUWbXzoAPUTnTug2KW0Dz_UHpiDqL3qMHiGipYgTvAuocWoKBEH2rHHpsT0vTx7ZzD2iKZipAUnpzRK1Dq4TsWneLZtvWqavswqqPAJOfOc7Wz0-r2Wu-eHuZz6aLXBdcxNyq2ihmqDZgG0sZE5YTzYw1nBDOi6agDMCahjSK1VApI0BoDZo2WpCaFuPsZsg9-O6zT5_KXdd7l05KyjgnZcqpE0UHSvsuBA9WHny7V_4oCZanSuVQqUw9ye9KpUhSMUghwW4D_i_6H-sLat96oA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sheng, Qiang</creator><creator>Jiao, Junfeng</creator><creator>Pang, Tianyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4761-7716</orcidid></search><sort><creationdate>20210901</creationdate><title>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</title><author>Sheng, Qiang ; Jiao, Junfeng ; Pang, Tianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Automotive Engineering</topic><topic>City centres</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Foundations</topic><topic>Gate counting</topic><topic>Geoengineering</topic><topic>Hydraulics</topic><topic>Impact analysis</topic><topic>Neighborhoods</topic><topic>Original Research Papers</topic><topic>Regression models</topic><topic>Suburban areas</topic><topic>Suburbs</topic><topic>Subway stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Qiang</creatorcontrib><creatorcontrib>Jiao, Junfeng</creatorcontrib><creatorcontrib>Pang, Tianyu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Urban rail transit</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Qiang</au><au>Jiao, Junfeng</au><au>Pang, Tianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</atitle><jtitle>Urban rail transit</jtitle><stitle>Urban Rail Transit</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>7</volume><issue>3</issue><spage>209</spage><epage>225</epage><pages>209-225</pages><issn>2199-6687</issn><eissn>2199-6679</eissn><abstract>This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40864-021-00152-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4761-7716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-6687
ispartof Urban rail transit, 2021-09, Vol.7 (3), p.209-225
issn 2199-6687
2199-6679
language eng
recordid cdi_proquest_journals_2566146118
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Global; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Accessibility
Automotive Engineering
City centres
Computational Intelligence
Engineering
Foundations
Gate counting
Geoengineering
Hydraulics
Impact analysis
Neighborhoods
Original Research Papers
Regression models
Suburban areas
Suburbs
Subway stations
title Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Impact%20of%20Street%20Patterns%20on%20Pedestrian%20Distribution:%20A%20Case%20Study%20in%20Tianjin,%20China&rft.jtitle=Urban%20rail%20transit&rft.au=Sheng,%20Qiang&rft.date=2021-09-01&rft.volume=7&rft.issue=3&rft.spage=209&rft.epage=225&rft.pages=209-225&rft.issn=2199-6687&rft.eissn=2199-6679&rft_id=info:doi/10.1007/s40864-021-00152-9&rft_dat=%3Cproquest_cross%3E2566146118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566146118&rft_id=info:pmid/&rfr_iscdi=true