Loading…
Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China
This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 st...
Saved in:
Published in: | Urban rail transit 2021-09, Vol.7 (3), p.209-225 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823 |
container_end_page | 225 |
container_issue | 3 |
container_start_page | 209 |
container_title | Urban rail transit |
container_volume | 7 |
creator | Sheng, Qiang Jiao, Junfeng Pang, Tianyu |
description | This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement. |
doi_str_mv | 10.1007/s40864-021-00152-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2566146118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566146118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhiMEElXpH2CyxErAdmInZqvKV6VKVKKdLcc-t6moU2xn6L_HJQg2prvhed47vVl2TfAdwbi6DyWueZljSnKMCaO5OMtGlAiRc16J89-9ri6zSQg7jBNK6pKyUWbXzoAPUTnTug2KW0Dz_UHpiDqL3qMHiGipYgTvAuocWoKBEH2rHHpsT0vTx7ZzD2iKZipAUnpzRK1Dq4TsWneLZtvWqavswqqPAJOfOc7Wz0-r2Wu-eHuZz6aLXBdcxNyq2ihmqDZgG0sZE5YTzYw1nBDOi6agDMCahjSK1VApI0BoDZo2WpCaFuPsZsg9-O6zT5_KXdd7l05KyjgnZcqpE0UHSvsuBA9WHny7V_4oCZanSuVQqUw9ye9KpUhSMUghwW4D_i_6H-sLat96oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566146118</pqid></control><display><type>article</type><title>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>ABI/INFORM Global</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Sheng, Qiang ; Jiao, Junfeng ; Pang, Tianyu</creator><creatorcontrib>Sheng, Qiang ; Jiao, Junfeng ; Pang, Tianyu</creatorcontrib><description>This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement.</description><identifier>ISSN: 2199-6687</identifier><identifier>EISSN: 2199-6679</identifier><identifier>DOI: 10.1007/s40864-021-00152-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accessibility ; Automotive Engineering ; City centres ; Computational Intelligence ; Engineering ; Foundations ; Gate counting ; Geoengineering ; Hydraulics ; Impact analysis ; Neighborhoods ; Original Research Papers ; Regression models ; Suburban areas ; Suburbs ; Subway stations</subject><ispartof>Urban rail transit, 2021-09, Vol.7 (3), p.209-225</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</citedby><cites>FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</cites><orcidid>0000-0002-4761-7716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2566146118?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11688,25753,27924,27925,36060,37012,44363,44590</link.rule.ids></links><search><creatorcontrib>Sheng, Qiang</creatorcontrib><creatorcontrib>Jiao, Junfeng</creatorcontrib><creatorcontrib>Pang, Tianyu</creatorcontrib><title>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</title><title>Urban rail transit</title><addtitle>Urban Rail Transit</addtitle><description>This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement.</description><subject>Accessibility</subject><subject>Automotive Engineering</subject><subject>City centres</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Foundations</subject><subject>Gate counting</subject><subject>Geoengineering</subject><subject>Hydraulics</subject><subject>Impact analysis</subject><subject>Neighborhoods</subject><subject>Original Research Papers</subject><subject>Regression models</subject><subject>Suburban areas</subject><subject>Suburbs</subject><subject>Subway stations</subject><issn>2199-6687</issn><issn>2199-6679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><recordid>eNp9kD1PwzAQhiMEElXpH2CyxErAdmInZqvKV6VKVKKdLcc-t6moU2xn6L_HJQg2prvhed47vVl2TfAdwbi6DyWueZljSnKMCaO5OMtGlAiRc16J89-9ri6zSQg7jBNK6pKyUWbXzoAPUTnTug2KW0Dz_UHpiDqL3qMHiGipYgTvAuocWoKBEH2rHHpsT0vTx7ZzD2iKZipAUnpzRK1Dq4TsWneLZtvWqavswqqPAJOfOc7Wz0-r2Wu-eHuZz6aLXBdcxNyq2ihmqDZgG0sZE5YTzYw1nBDOi6agDMCahjSK1VApI0BoDZo2WpCaFuPsZsg9-O6zT5_KXdd7l05KyjgnZcqpE0UHSvsuBA9WHny7V_4oCZanSuVQqUw9ye9KpUhSMUghwW4D_i_6H-sLat96oA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Sheng, Qiang</creator><creator>Jiao, Junfeng</creator><creator>Pang, Tianyu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4761-7716</orcidid></search><sort><creationdate>20210901</creationdate><title>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</title><author>Sheng, Qiang ; Jiao, Junfeng ; Pang, Tianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Automotive Engineering</topic><topic>City centres</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Foundations</topic><topic>Gate counting</topic><topic>Geoengineering</topic><topic>Hydraulics</topic><topic>Impact analysis</topic><topic>Neighborhoods</topic><topic>Original Research Papers</topic><topic>Regression models</topic><topic>Suburban areas</topic><topic>Suburbs</topic><topic>Subway stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheng, Qiang</creatorcontrib><creatorcontrib>Jiao, Junfeng</creatorcontrib><creatorcontrib>Pang, Tianyu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Urban rail transit</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheng, Qiang</au><au>Jiao, Junfeng</au><au>Pang, Tianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China</atitle><jtitle>Urban rail transit</jtitle><stitle>Urban Rail Transit</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>7</volume><issue>3</issue><spage>209</spage><epage>225</epage><pages>209-225</pages><issn>2199-6687</issn><eissn>2199-6679</eissn><abstract>This paper investigates the impact of street pattern, metro stations, and density of urban functions on pedestrian distribution in Tianjin, China. Thirteen neighborhoods are selected from the city center and suburbs. Pedestrian and vehicle volumes are observed through detailed gate count from 703 street segments in these neighborhoods. Regression models are constructed to analyze the impact of the street pattern, points of interest (POIs), and vehicle and metro accessibility on pedestrian volumes in each neighborhood and across the city. The results show that when analyzing all neighborhoods together, local street connectivity and POIs had a strong influence on pedestrian distribution. Proximity to metro stations and vehicle accessibility had a minor impact. When analyzing each neighborhood separately, both local- and city-scale street patterns affect pedestrian distributions. These findings suggest that the street pattern provides a base layer for metro stations to attract both the emergence of active urban functions and pedestrian movement.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40864-021-00152-9</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4761-7716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-6687 |
ispartof | Urban rail transit, 2021-09, Vol.7 (3), p.209-225 |
issn | 2199-6687 2199-6679 |
language | eng |
recordid | cdi_proquest_journals_2566146118 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); ABI/INFORM Global; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Accessibility Automotive Engineering City centres Computational Intelligence Engineering Foundations Gate counting Geoengineering Hydraulics Impact analysis Neighborhoods Original Research Papers Regression models Suburban areas Suburbs Subway stations |
title | Understanding the Impact of Street Patterns on Pedestrian Distribution: A Case Study in Tianjin, China |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Impact%20of%20Street%20Patterns%20on%20Pedestrian%20Distribution:%20A%20Case%20Study%20in%20Tianjin,%20China&rft.jtitle=Urban%20rail%20transit&rft.au=Sheng,%20Qiang&rft.date=2021-09-01&rft.volume=7&rft.issue=3&rft.spage=209&rft.epage=225&rft.pages=209-225&rft.issn=2199-6687&rft.eissn=2199-6679&rft_id=info:doi/10.1007/s40864-021-00152-9&rft_dat=%3Cproquest_cross%3E2566146118%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-fa8da5d2cdefbf2559f61c5dfd611663b325eefdb1ba58e7ad9e9ccec2bc91823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2566146118&rft_id=info:pmid/&rfr_iscdi=true |